Instant-NGP ==================== See code `examples/train_ngp_nerf.py` at our `github repository`_ for details. Benchmarks ------------ Here we trained a NGP Nerf model on the NeRF-Synthetic dataset. We follow the same settings with the paper, which uses trainval split for training and test split for evaluation. Our experiments are conducted on a single NVIDIA TITAN RTX GPU. The training memory footprint is about 3GB. .. note:: The paper makes use of the alpha channel in the images to apply random background augmentation during training. Yet we only uses RGB values with a constant white background. +----------------------+-------+-------+------------+-------+--------+--------+--------+--------+--------+ | | Lego | Mic | Materials |Chair |Hotdog | Ficus | Drums | Ship | AVG | | | | | | | | | | | | +======================+=======+=======+============+=======+========+========+========+========+========+ | Paper (PSNR: 5min) | 36.39 | 36.22 | 29.78 | 35.00 | 37.40 | 33.51 | 26.02 | 31.10 | 33.18 | +----------------------+-------+-------+------------+-------+--------+--------+--------+--------+--------+ | Ours (PSNR:4.5min) | 36.71 | 36.78 | 29.06 | 36.10 | 37.88 | 32.07 | 25.83 | 31.39 | 33.23 | +----------------------+-------+-------+------------+-------+--------+--------+--------+--------+--------+ | Ours (Training time)| 286s | 251s | 250s | 311s | 275s | 254s | 249s | 255s | 266s | +----------------------+-------+-------+------------+-------+--------+--------+--------+--------+--------+ .. _`github repository`: : https://github.com/KAIR-BAIR/nerfacc/