import math import time import numpy as np import torch import torch.nn.functional as F import tqdm from datasets.nerf_synthetic import SubjectLoader from datasets.utils import namedtuple_map from radiance_fields.ngp import NGPradianceField from nerfacc import OccupancyField, volumetric_rendering def render_image(radiance_field, rays, render_bkgd): """Render the pixels of an image. Args: radiance_field: the radiance field of nerf. rays: a `Rays` namedtuple, the rays to be rendered. Returns: rgb: torch.tensor, rendered color image. depth: torch.tensor, rendered depth image. acc: torch.tensor, rendered accumulated weights per pixel. """ rays_shape = rays.origins.shape if len(rays_shape) == 3: height, width, _ = rays_shape num_rays = height * width rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays) else: num_rays, _ = rays_shape results = [] chunk = torch.iinfo(torch.int32).max if radiance_field.training else 81920 for i in range(0, num_rays, chunk): chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays) chunk_color, chunk_depth, chunk_weight, alive_ray_mask, = volumetric_rendering( query_fn=radiance_field.forward, # {x, dir} -> {rgb, density} rays_o=chunk_rays.origins, rays_d=chunk_rays.viewdirs, scene_aabb=occ_field.aabb, scene_occ_binary=occ_field.occ_grid_binary, scene_resolution=occ_field.resolution, render_bkgd=render_bkgd, render_n_samples=render_n_samples, ) results.append([chunk_color, chunk_depth, chunk_weight, alive_ray_mask]) rgb, depth, acc, alive_ray_mask = [torch.cat(r, dim=0) for r in zip(*results)] return ( rgb.view((*rays_shape[:-1], -1)), depth.view((*rays_shape[:-1], -1)), acc.view((*rays_shape[:-1], -1)), alive_ray_mask.view(*rays_shape[:-1]), ) if __name__ == "__main__": torch.manual_seed(42) device = "cuda:0" # setup dataset train_dataset = SubjectLoader( subject_id="lego", root_fp="/home/ruilongli/data/nerf_synthetic/", split="val", num_rays=8192, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, num_workers=10, batch_size=1, collate_fn=getattr(train_dataset.__class__, "collate_fn"), ) test_dataset = SubjectLoader( subject_id="lego", root_fp="/home/ruilongli/data/nerf_synthetic/", split="test", num_rays=None, ) test_dataloader = torch.utils.data.DataLoader( test_dataset, num_workers=10, batch_size=1, collate_fn=getattr(train_dataset.__class__, "collate_fn"), ) # setup the scene bounding box. scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5]) # setup the scene radiance field. Assume you have a NeRF model and # it has following functions: # - query_density(): {x} -> {density} # - forward(): {x, dirs} -> {rgb, density} radiance_field = NGPradianceField(aabb=scene_aabb).to(device) # setup some rendering settings render_n_samples = 1024 render_step_size = ( (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples ) optimizer = torch.optim.Adam(radiance_field.parameters(), lr=3e-3, eps=1e-15) # setup occupancy field with eval function def occ_eval_fn(x: torch.Tensor) -> torch.Tensor: """Evaluate occupancy given positions. Args: x: positions with shape (N, 3). Returns: occupancy values with shape (N, 1). """ density_after_activation = radiance_field.query_density(x) # those two are similar when density is small. # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size) occupancy = density_after_activation * render_step_size return occupancy occ_field = OccupancyField( occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128 ).to(device) # training step = 0 tic = time.time() for epoch in range(200): for data in train_dataloader: step += 1 if step > 30_000: print("training stops") exit() # generate rays from data and the gt pixel color rays = namedtuple_map(lambda x: x.to(device), data["rays"]) pixels = data["pixels"].to(device) render_bkgd = data["color_bkgd"].to(device) # update occupancy grid occ_field.every_n_step(step) rgb, depth, acc, alive_ray_mask = render_image( radiance_field, rays, render_bkgd ) # compute loss loss = F.mse_loss(rgb, pixels) optimizer.zero_grad() loss.backward() optimizer.step() if step % 50 == 0: elapsed_time = time.time() - tic print( f"elapsed_time={elapsed_time:.2f}s | {step=} | loss={loss.item(): .5f}" ) if step % 30_000 == 0 and step > 0: # evaluation radiance_field.eval() psnrs = [] with torch.no_grad(): for data in tqdm.tqdm(test_dataloader): # generate rays from data and the gt pixel color rays = namedtuple_map(lambda x: x.to(device), data["rays"]) pixels = data["pixels"].to(device) render_bkgd = data["color_bkgd"].to(device) # rendering rgb, depth, acc, alive_ray_mask = render_image( radiance_field, rays, render_bkgd ) mse = F.mse_loss(rgb, pixels) psnr = -10.0 * torch.log(mse) / np.log(10.0) psnrs.append(psnr.item()) psnr_avg = sum(psnrs) / len(psnrs) print(f"evaluation: {psnr_avg=}") # "train" # elapsed_time=317.59s | step=30000 | loss= 0.00028 # evaluation: psnr_avg=33.27096959114075 (6.24 it/s) # "trainval" # elapsed_time=389.08s | step=30000 | loss= 0.00030 # evaluation: psnr_avg=34.00573859214783 (6.26 it/s)