NerfAcc Documentation =================================== NerfAcc is a PyTorch Nerf acceleration toolbox for both training and inference. It focus on efficient sampling in the volumetric rendering pipeline of radiance fields, which is universal and plug-and-play for most of the NeRFs. With minimal modifications to the existing codebases, Nerfacc provides significant speedups in training various recent NeRF papers. **And it is pure Python interface with flexible APIs!** | .. image:: _static/images/teaser.jpg :align: center | | Github: https://github.com/KAIR-BAIR/nerfacc | Paper: https://arxiv.org/pdf/2210.04847.pdf (To Be Updated) | Authors: `Ruilong Li`_, `Hang Gao`_, `Matthew Tancik`_, `Angjoo Kanazawa`_ .. note:: This repo is focusing on the single scene situation. Generalizable Nerfs across multiple scenes is currently out of the scope of this repo. But you may still find some useful tricks in this repo. :) Installation: ------------- **Dependence**: Please install `Pytorch`_ first. The easist way is to install from PyPI. In this way it will build the CUDA code **on the first run** (JIT). .. code-block:: console $ pip install nerfacc Or install from source. In this way it will build the CUDA code during installation. .. code-block:: console $ pip install git+https://github.com/KAIR-BAIR/nerfacc.git We also provide pre-built wheels covering major combinations of Pytorch + CUDA versions. See our `Github README`_ for what we support. .. code-block:: console // e.g. torch 1.13.0 + CUDA 11.7 $ pip install nerfacc -f https://nerfacc-bucket.s3.us-west-2.amazonaws.com/whl/torch-1.13.0_cu117.html Usage: ------------- The idea of NerfAcc is to perform efficient volumetric sampling with a computationally cheap estimator to discover surfaces. So NerfAcc can work with any user-defined radiance field. To plug the NerfAcc rendering pipeline into your code and enjoy the acceleration, you only need to define two functions with your radience field. - `sigma_fn`: Compute density at each sample. It will be used by the estimator (e.g., :class:`nerfacc.OccGridEstimator`, :class:`nerfacc.PropNetEstimator`) to discover surfaces. - `rgb_sigma_fn`: Compute color and density at each sample. It will be used by :func:`nerfacc.rendering` to conduct differentiable volumetric rendering. This function will receive gradients to update your radiance field. An simple example is like this: .. code-block:: python import torch from torch import Tensor import nerfacc radiance_field = ... # network: a NeRF model rays_o: Tensor = ... # ray origins. (n_rays, 3) rays_d: Tensor = ... # ray normalized directions. (n_rays, 3) optimizer = ... # optimizer estimator = nerfacc.OccGridEstimator(...) def sigma_fn( t_starts: Tensor, t_ends:Tensor, ray_indices: Tensor ) -> Tensor: """ Define how to query density for the estimator.""" t_origins = rays_o[ray_indices] # (n_samples, 3) t_dirs = rays_d[ray_indices] # (n_samples, 3) positions = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0 sigmas = radiance_field.query_density(positions) return sigmas # (n_samples,) def rgb_sigma_fn( t_starts: Tensor, t_ends: Tensor, ray_indices: Tensor ) -> Tuple[Tensor, Tensor]: """ Query rgb and density values from a user-defined radiance field. """ t_origins = rays_o[ray_indices] # (n_samples, 3) t_dirs = rays_d[ray_indices] # (n_samples, 3) positions = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0 rgbs, sigmas = radiance_field(positions, condition=t_dirs) return rgbs, sigmas # (n_samples, 3), (n_samples,) # Efficient Raymarching: # ray_indices: (n_samples,). t_starts: (n_samples,). t_ends: (n_samples,). ray_indices, t_starts, t_ends = estimator.sampling( rays_o, rays_d, sigma_fn=sigma_fn, near_plane=0.2, far_plane=1.0, early_stop_eps=1e-4, alpha_thre=1e-2, ) # Differentiable Volumetric Rendering. # colors: (n_rays, 3). opaicity: (n_rays, 1). depth: (n_rays, 1). color, opacity, depth, extras = nerfacc.rendering( t_starts, t_ends, ray_indices, n_rays=rays_o.shape[0], rgb_sigma_fn=rgb_sigma_fn ) # Optimize: Both the network and rays will receive gradients optimizer.zero_grad() loss = F.mse_loss(color, color_gt) loss.backward() optimizer.step() Links: ------------- .. toctree:: :glob: :maxdepth: 1 :caption: Methodology methodology/* .. toctree:: :glob: :maxdepth: 1 :caption: Python API apis/* .. toctree:: :glob: :maxdepth: 1 :caption: Example Usages and Benchmarks examples/* .. toctree:: :maxdepth: 1 :caption: Projects nerfstudio instant-nsr-pl .. _`vanilla Nerf`: https://arxiv.org/abs/2003.08934 .. _`Instant-NGP Nerf`: https://arxiv.org/abs/2201.05989 .. _`D-Nerf`: https://arxiv.org/abs/2011.13961 .. _`MipNerf360`: https://arxiv.org/abs/2111.12077 .. _`pixel-Nerf`: https://arxiv.org/abs/2012.02190 .. _`Nerf++`: https://arxiv.org/abs/2010.07492 .. _`Ruilong Li`: https://www.liruilong.cn/ .. _`Hang Gao`: https://hangg7.com/ .. _`Matthew Tancik`: https://www.matthewtancik.com/ .. _`Angjoo Kanazawa`: https://people.eecs.berkeley.edu/~kanazawa/ .. _`Github README`: https://github.com/KAIR-BAIR/nerfacc#readme .. _`PyTorch`: https://pytorch.org/get-started/locally/