import torch import tqdm from nerfacc import volumetric_marching device = "cuda:0" def test_marching(): torch.manual_seed(42) scene_aabb = torch.tensor([0, 0, 0, 1, 1, 1], device=device).float() scene_occ_binary = torch.rand((128 * 128 * 128), device=device) > 0.5 rays_o = torch.rand((10000, 3), device=device) rays_d = torch.randn((10000, 3), device=device) rays_d = rays_d / rays_d.norm(dim=-1, keepdim=True) for step in tqdm.tqdm(range(5000)): volumetric_marching( rays_o, rays_d, aabb=scene_aabb, scene_resolution=[128, 128, 128], scene_occ_binary=scene_occ_binary, ) if __name__ == "__main__": test_marching()