.. _`Instant-NGP Example`: Instant-NGP ==================== See code `examples/train_ngp_nerf.py` at our `github repository`_ for details. Benchmarks ------------ *updated on 2022-10-08* Here we trained a `Instant-NGP Nerf`_ model on the `Nerf-Synthetic dataset`_. We follow the same settings with the Instant-NGP paper, which uses trainval split for training and test split for evaluation. Our experiments are conducted on a single NVIDIA TITAN RTX GPU. The training memory footprint is about 3GB. .. note:: The Instant-NGP paper makes use of the alpha channel in the images to apply random background augmentation during training. Yet we only uses RGB values with a constant white background. +----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+ | PSNR | Lego | Mic |Materials| Chair |Hotdog | Ficus | Drums | Ship | MEAN | | | | | | | | | | | | +======================+=======+=======+=========+=======+=======+=======+=======+=======+=======+ | Instant-NGP (5min) | 36.39 | 36.22 | 29.78 | 35.00 | 37.40 | 33.51 | 26.02 | 31.10 | 33.18 | +----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+ | Ours (~4.5min) | 36.82 | 37.61 | 30.18 | 36.13 | 38.11 | 34.48 | 26.62 | 31.37 | 33.92 | +----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+ | Ours (Training time)| 288s | 259s | 256s | 324s | 288s | 245s | 262s | 257s | 272s | +----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+ .. _`Instant-NGP Nerf`: https://arxiv.org/abs/2201.05989 .. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1 .. _`Nerf-Synthetic dataset`: https://drive.google.com/drive/folders/1JDdLGDruGNXWnM1eqY1FNL9PlStjaKWi