import argparse import math import time import numpy as np import torch import torch.nn.functional as F import tqdm from datasets.nerf_synthetic import SubjectLoader, namedtuple_map from radiance_fields.mlp import VanillaNeRFRadianceField from radiance_fields.ngp import NGPradianceField from nerfacc import OccupancyField, volumetric_rendering TARGET_SAMPLE_BATCH_SIZE = 1 << 16 def render_image( radiance_field, rays, render_bkgd, render_step_size, test_chunk_size=81920 ): """Render the pixels of an image. Args: radiance_field: the radiance field of nerf. rays: a `Rays` namedtuple, the rays to be rendered. Returns: rgb: torch.tensor, rendered color image. depth: torch.tensor, rendered depth image. acc: torch.tensor, rendered accumulated weights per pixel. """ rays_shape = rays.origins.shape if len(rays_shape) == 3: height, width, _ = rays_shape num_rays = height * width rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays) else: num_rays, _ = rays_shape def sigma_fn(frustum_origins, frustum_dirs, frustum_starts, frustum_ends): positions = ( frustum_origins + frustum_dirs * (frustum_starts + frustum_ends) / 2.0 ) return radiance_field.query_density(positions) def sigma_rgb_fn(frustum_origins, frustum_dirs, frustum_starts, frustum_ends): positions = ( frustum_origins + frustum_dirs * (frustum_starts + frustum_ends) / 2.0 ) return radiance_field(positions, frustum_dirs) results = [] chunk = torch.iinfo(torch.int32).max if radiance_field.training else test_chunk_size for i in range(0, num_rays, chunk): chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays) chunk_results = volumetric_rendering( sigma_fn=sigma_fn, sigma_rgb_fn=sigma_rgb_fn, rays_o=chunk_rays.origins, rays_d=chunk_rays.viewdirs, scene_aabb=occ_field.aabb, scene_occ_binary=occ_field.occ_grid_binary, scene_resolution=occ_field.resolution, render_bkgd=render_bkgd, render_step_size=render_step_size, near_plane=0.0, stratified=radiance_field.training, ) results.append(chunk_results) colors, opacities, n_marching_samples, n_rendering_samples = [ torch.cat(r, dim=0) if isinstance(r[0], torch.Tensor) else r for r in zip(*results) ] return ( colors.view((*rays_shape[:-1], -1)), opacities.view((*rays_shape[:-1], -1)), sum(n_marching_samples), sum(n_rendering_samples), ) if __name__ == "__main__": torch.manual_seed(42) parser = argparse.ArgumentParser() parser.add_argument( "method", type=str, default="ngp", choices=["ngp", "vanilla"], help="which nerf to use", ) parser.add_argument( "--train_split", type=str, default="trainval", choices=["train", "trainval"], help="which train split to use", ) parser.add_argument( "--scene", type=str, default="lego", choices=[ "chair", "drums", "ficus", "hotdog", "lego", "materials", "mic", "ship", ], help="which scene to use", ) parser.add_argument( "--test_chunk_size", type=int, default=81920, ) args = parser.parse_args() device = "cuda:0" scene = args.scene # setup the scene bounding box. scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5]) # setup some rendering settings render_n_samples = 1024 render_step_size = ( (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples ).item() # setup dataset train_dataset = SubjectLoader( subject_id=scene, root_fp="/home/ruilongli/data/nerf_synthetic/", split=args.train_split, num_rays=TARGET_SAMPLE_BATCH_SIZE // render_n_samples, # color_bkgd_aug="random", ) train_dataset.images = train_dataset.images.to(device) train_dataset.camtoworlds = train_dataset.camtoworlds.to(device) train_dataset.K = train_dataset.K.to(device) train_dataloader = torch.utils.data.DataLoader( train_dataset, num_workers=0, batch_size=None, # persistent_workers=True, shuffle=True, ) test_dataset = SubjectLoader( subject_id=scene, root_fp="/home/ruilongli/data/nerf_synthetic/", split="test", num_rays=None, ) test_dataset.images = test_dataset.images.to(device) test_dataset.camtoworlds = test_dataset.camtoworlds.to(device) test_dataset.K = test_dataset.K.to(device) test_dataloader = torch.utils.data.DataLoader( test_dataset, num_workers=0, batch_size=None, ) # setup the scene radiance field. Assume you have a NeRF model and # it has following functions: # - query_density(): {x} -> {density} # - forward(): {x, dirs} -> {rgb, density} if args.method == "ngp": radiance_field = NGPradianceField(aabb=scene_aabb).to(device) optimizer = torch.optim.Adam(radiance_field.parameters(), lr=1e-2, eps=1e-15) max_steps = 20000 occ_field_warmup_steps = 2000 grad_scaler = torch.cuda.amp.GradScaler(1) elif args.method == "vanilla": radiance_field = VanillaNeRFRadianceField().to(device) optimizer = torch.optim.Adam(radiance_field.parameters(), lr=5e-4) max_steps = 40000 occ_field_warmup_steps = 256 grad_scaler = torch.cuda.amp.GradScaler(2**10) scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[max_steps // 2, max_steps * 3 // 4, max_steps * 9 // 10], gamma=0.33, ) # setup occupancy field with eval function def occ_eval_fn(x: torch.Tensor) -> torch.Tensor: """Evaluate occupancy given positions. Args: x: positions with shape (N, 3). Returns: occupancy values with shape (N, 1). """ density_after_activation = radiance_field.query_density(x) # those two are similar when density is small. # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size) occupancy = density_after_activation * render_step_size return occupancy occ_field = OccupancyField( occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128 ).to(device) # training step = 0 tic = time.time() data_time = 0 tic_data = time.time() for epoch in range(10000000): for i in range(len(train_dataset)): radiance_field.train() data = train_dataset[i] data_time += time.time() - tic_data # generate rays from data and the gt pixel color # rays = namedtuple_map(lambda x: x.to(device), data["rays"]) # pixels = data["pixels"].to(device) render_bkgd = data["color_bkgd"] rays = data["rays"] pixels = data["pixels"] # update occupancy grid occ_field.every_n_step(step, warmup_steps=occ_field_warmup_steps) rgb, acc, counter, compact_counter = render_image( radiance_field, rays, render_bkgd, render_step_size ) num_rays = len(pixels) num_rays = int( num_rays * (TARGET_SAMPLE_BATCH_SIZE / float(compact_counter)) ) train_dataset.update_num_rays(num_rays) alive_ray_mask = acc.squeeze(-1) > 0 # compute loss loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask]) optimizer.zero_grad() # do not unscale it because we are using Adam. grad_scaler.scale(loss).backward() optimizer.step() scheduler.step() if step % 100 == 0: elapsed_time = time.time() - tic loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask]) print( f"elapsed_time={elapsed_time:.2f}s (data={data_time:.2f}s) | {step=} | " f"loss={loss:.5f} | " f"alive_ray_mask={alive_ray_mask.long().sum():d} | " f"counter={counter:d} | compact_counter={compact_counter:d} | num_rays={len(pixels):d} |" ) # if time.time() - tic > 300: if step >= max_steps and step % max_steps == 0 and step > 0: # evaluation radiance_field.eval() psnrs = [] with torch.no_grad(): for data in tqdm.tqdm(test_dataloader): # generate rays from data and the gt pixel color rays = namedtuple_map(lambda x: x.to(device), data["rays"]) pixels = data["pixels"].to(device) render_bkgd = data["color_bkgd"].to(device) # rendering rgb, acc, _, _ = render_image( radiance_field, rays, render_bkgd, render_step_size, test_chunk_size=args.test_chunk_size, ) mse = F.mse_loss(rgb, pixels) psnr = -10.0 * torch.log(mse) / np.log(10.0) psnrs.append(psnr.item()) psnr_avg = sum(psnrs) / len(psnrs) print(f"evaluation: {psnr_avg=}") # imageio.imwrite( # "acc_binary_test.png", # ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8), # ) # psnrs = [] # train_dataset.training = False # with torch.no_grad(): # for data in tqdm.tqdm(train_dataloader): # # generate rays from data and the gt pixel color # rays = namedtuple_map(lambda x: x.to(device), data["rays"]) # pixels = data["pixels"].to(device) # render_bkgd = data["color_bkgd"].to(device) # # rendering # rgb, acc, _, _ = render_image( # radiance_field, rays, render_bkgd, render_step_size # ) # mse = F.mse_loss(rgb, pixels) # psnr = -10.0 * torch.log(mse) / np.log(10.0) # psnrs.append(psnr.item()) # psnr_avg = sum(psnrs) / len(psnrs) # print(f"evaluation on train: {psnr_avg=}") # imageio.imwrite( # "acc_binary_train.png", # ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8), # ) # imageio.imwrite( # "rgb_train.png", # (rgb.cpu().numpy() * 255).astype(np.uint8), # ) train_dataset.training = True if step == max_steps: print("training stops") exit() tic_data = time.time() step += 1