Unverified Commit 16ceaeb7 authored by Youtian Lin's avatar Youtian Lin Committed by GitHub
Browse files

Add pre-computed transmittance (#206)

* add pre-computed transmittance_

* add prefix_trans to all render  functions
parent 09b43b1d
......@@ -155,6 +155,7 @@ def render_transmittance_from_alpha(
packed_info: Optional[Tensor] = None,
ray_indices: Optional[Tensor] = None,
n_rays: Optional[int] = None,
prefix_trans: Optional[Tensor] = None,
) -> Tensor:
"""Compute transmittance :math:`T_i` from alpha :math:`\\alpha_i`.
......@@ -171,6 +172,7 @@ def render_transmittance_from_alpha(
Useful for flattened input.
ray_indices: Ray indices of the flattened samples. LongTensor with shape (all_samples).
n_rays: Number of rays. Only useful when `ray_indices` is provided.
prefix_trans: The pre-computed transmittance of the samples. Tensor with shape (all_samples,).
Returns:
The rendering transmittance with the same shape as `alphas`.
......@@ -191,6 +193,8 @@ def render_transmittance_from_alpha(
packed_info = pack_info(ray_indices, n_rays)
trans = exclusive_prod(1 - alphas, packed_info)
if prefix_trans is not None:
trans *= prefix_trans
return trans
......@@ -201,6 +205,7 @@ def render_transmittance_from_density(
packed_info: Optional[Tensor] = None,
ray_indices: Optional[Tensor] = None,
n_rays: Optional[int] = None,
prefix_trans: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
"""Compute transmittance :math:`T_i` from density :math:`\\sigma_i`.
......@@ -221,6 +226,7 @@ def render_transmittance_from_density(
Useful for flattened input.
ray_indices: Ray indices of the flattened samples. LongTensor with shape (all_samples).
n_rays: Number of rays. Only useful when `ray_indices` is provided.
prefix_trans: The pre-computed transmittance of the samples. Tensor with shape (all_samples,).
Returns:
The rendering transmittance and opacities, both with the same shape as `sigmas`.
......@@ -245,6 +251,8 @@ def render_transmittance_from_density(
sigmas_dt = sigmas * (t_ends - t_starts)
alphas = 1.0 - torch.exp(-sigmas_dt)
trans = torch.exp(-exclusive_sum(sigmas_dt, packed_info))
if prefix_trans is not None:
trans *= prefix_trans
return trans, alphas
......@@ -253,6 +261,7 @@ def render_weight_from_alpha(
packed_info: Optional[Tensor] = None,
ray_indices: Optional[Tensor] = None,
n_rays: Optional[int] = None,
prefix_trans: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
"""Compute rendering weights :math:`w_i` from opacity :math:`\\alpha_i`.
......@@ -269,6 +278,7 @@ def render_weight_from_alpha(
Useful for flattened input.
ray_indices: Ray indices of the flattened samples. LongTensor with shape (all_samples).
n_rays: Number of rays. Only useful when `ray_indices` is provided.
prefix_trans: The pre-computed transmittance of the samples. Tensor with shape (all_samples,).
Returns:
The rendering weights and transmittance, both with the same shape as `alphas`.
......@@ -285,7 +295,7 @@ def render_weight_from_alpha(
"""
trans = render_transmittance_from_alpha(
alphas, packed_info, ray_indices, n_rays
alphas, packed_info, ray_indices, n_rays, prefix_trans
)
weights = trans * alphas
return weights, trans
......@@ -298,6 +308,7 @@ def render_weight_from_density(
packed_info: Optional[Tensor] = None,
ray_indices: Optional[Tensor] = None,
n_rays: Optional[int] = None,
prefix_trans: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Tensor]:
"""Compute rendering weights :math:`w_i` from density :math:`\\sigma_i` and interval :math:`\\delta_i`.
......@@ -316,6 +327,7 @@ def render_weight_from_density(
Useful for flattened input.
ray_indices: Ray indices of the flattened samples. LongTensor with shape (all_samples).
n_rays: Number of rays. Only useful when `ray_indices` is provided.
prefix_trans: The pre-computed transmittance of the samples. Tensor with shape (all_samples,).
Returns:
The rendering weights, transmittance and opacities, both with the same shape as `sigmas`.
......@@ -336,7 +348,7 @@ def render_weight_from_density(
"""
trans, alphas = render_transmittance_from_density(
t_starts, t_ends, sigmas, packed_info, ray_indices, n_rays
t_starts, t_ends, sigmas, packed_info, ray_indices, n_rays, prefix_trans
)
weights = trans * alphas
return weights, trans, alphas
......@@ -350,6 +362,7 @@ def render_visibility_from_alpha(
n_rays: Optional[int] = None,
early_stop_eps: float = 1e-4,
alpha_thre: float = 0.0,
prefix_trans: Optional[Tensor] = None,
) -> Tensor:
"""Compute visibility from opacity :math:`\\alpha_i`.
......@@ -370,6 +383,7 @@ def render_visibility_from_alpha(
n_rays: Number of rays. Only useful when `ray_indices` is provided.
early_stop_eps: The early stopping threshold on transmittance.
alpha_thre: The threshold on opacity.
prefix_trans: The pre-computed transmittance of the samples. Tensor with shape (all_samples,).
Returns:
A boolean tensor indicating which samples are visible. Same shape as `alphas`.
......@@ -388,7 +402,7 @@ def render_visibility_from_alpha(
"""
trans = render_transmittance_from_alpha(
alphas, packed_info, ray_indices, n_rays
alphas, packed_info, ray_indices, n_rays, prefix_trans
)
vis = trans >= early_stop_eps
if alpha_thre > 0:
......@@ -406,6 +420,7 @@ def render_visibility_from_density(
n_rays: Optional[int] = None,
early_stop_eps: float = 1e-4,
alpha_thre: float = 0.0,
prefix_trans: Optional[Tensor] = None,
) -> Tensor:
"""Compute visibility from density :math:`\\sigma_i` and interval :math:`\\delta_i`.
......@@ -426,6 +441,7 @@ def render_visibility_from_density(
n_rays: Number of rays. Only useful when `ray_indices` is provided.
early_stop_eps: The early stopping threshold on transmittance.
alpha_thre: The threshold on opacity.
prefix_trans: The pre-computed transmittance of the samples. Tensor with shape (all_samples,).
Returns:
A boolean tensor indicating which samples are visible. Same shape as `alphas`.
......@@ -448,7 +464,7 @@ def render_visibility_from_density(
"""
trans, alphas = render_transmittance_from_density(
t_starts, t_ends, sigmas, packed_info, ray_indices, n_rays
t_starts, t_ends, sigmas, packed_info, ray_indices, n_rays, prefix_trans
)
vis = trans >= early_stop_eps
if alpha_thre > 0:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment