Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nerfacc
Commits
127223b1
Unverified
Commit
127223b1
authored
Oct 09, 2022
by
Ruilong Li(李瑞龙)
Committed by
GitHub
Oct 09, 2022
Browse files
sync pref (#60)
parent
6b8c91fd
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
10 additions
and
8 deletions
+10
-8
README.md
README.md
+1
-1
docs/source/examples/dnerf.rst
docs/source/examples/dnerf.rst
+4
-3
docs/source/examples/ngp.rst
docs/source/examples/ngp.rst
+1
-1
docs/source/examples/unbounded.rst
docs/source/examples/unbounded.rst
+1
-1
docs/source/examples/vanilla.rst
docs/source/examples/vanilla.rst
+2
-1
docs/source/index.rst
docs/source/index.rst
+1
-1
No files found.
README.md
View file @
127223b1
...
...
@@ -14,7 +14,7 @@ Using NerfAcc,
-
The
`Instant-NGP NeRF`
model can be trained to
*better quality*
(+~0.7 PSNR) with
*9/10th*
of
the training time (4.5 minutes) comparing to the official pure-CUDA implementation.
-
The
`D-NeRF`
model for
*dynamic*
objects can also be trained in
*1 hour*
rather than
*2 days*
as in the paper, and with
*better quality*
(+~
0.5
PSNR).
rather than
*2 days*
as in the paper, and with
*better quality*
(+~
2.0
PSNR).
-
Both
*bounded*
and
*unbounded*
scenes are supported.
**And it is pure Python interface with flexible APIs!**
...
...
docs/source/examples/dnerf.rst
View file @
127223b1
...
...
@@ -5,6 +5,7 @@ See code `examples/train_mlp_dnerf.py` at our `github repository`_ for details.
Benchmarks
------------
*updated on 2022-10-08*
Here we trained a 8-layer-MLP for the radiance field and a 4-layer-MLP for the warping field,
(similar to the T-Nerf model in the `D-Nerf`_ paper) on the `D-Nerf dataset`_. We used train
...
...
@@ -24,12 +25,12 @@ single NVIDIA TITAN RTX GPU. The training memory footprint is about 11GB.
+======================+==========+=========+=======+=========+=======+========+=========+=======+=======+
| D-Nerf (~ days) | 38.93 | 25.02 | 29.25 | 32.80 | 21.64 | 31.29 | 32.79 | 31.75 | 30.43 |
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
| Ours (~
50min)
| 39.
60
| 2
2.41
| 3
0.64
| 2
9
.7
9
| 24.
75
| 35.
20
| 3
4.5
0 | 3
1.8
3 | 3
1.09
|
| Ours (~
1 hr)
| 39.
49
| 2
5.58
| 3
1.86
|
3
2.7
3
| 24.
32
| 35.
55
| 3
5.9
0 | 3
2.3
3 | 3
2.22
|
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
| Ours (Training time)|
45
min |
49
min |
51
min |
4
6min |
53
min |
5
7min |
4
9min |
46
min | 5
0
min |
| Ours (Training time)|
37
min |
52
min |
69
min | 6
4
min |
44
min | 7
9
min |
7
9min |
39
min | 5
8
min |
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
.. _`D-Nerf`: https://arxiv.org/abs/2011.13961
.. _`D-Nerf dataset`: https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1
docs/source/examples/ngp.rst
View file @
127223b1
...
...
@@ -31,5 +31,5 @@ memory footprint is about 3GB.
+----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+
.. _`Instant-NGP Nerf`: https://arxiv.org/abs/2201.05989
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1
.. _`Nerf-Synthetic dataset`: https://drive.google.com/drive/folders/1JDdLGDruGNXWnM1eqY1FNL9PlStjaKWi
docs/source/examples/unbounded.rst
View file @
127223b1
...
...
@@ -40,4 +40,4 @@ that takes from `MipNerf360`_.
.. _`Instant-NGP Nerf`: https://arxiv.org/abs/2201.05989
.. _`MipNerf360`: https://arxiv.org/abs/2111.12077
.. _`Nerf++`: https://arxiv.org/abs/2010.07492
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1
docs/source/examples/vanilla.rst
View file @
127223b1
...
...
@@ -5,6 +5,7 @@ See code `examples/train_mlp_nerf.py` at our `github repository`_ for details.
Benchmarks
------------
*updated on 2022-10-08*
Here we trained a 8-layer-MLP for the radiance field as in the `vanilla Nerf`_. We used the
train split for training and test split for evaluation as in the Nerf paper. Our experiments are
...
...
@@ -28,5 +29,5 @@ conducted on a single NVIDIA TITAN RTX GPU. The training memory footprint is abo
| Ours (Training time)| 58min | 53min | 46min | 62min | 56min | 42min | 52min | 49min | 52min |
+----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+
.. _`github repository`: : https://github.com/KAIR-BAIR/nerfacc/
.. _`github repository`: : https://github.com/KAIR-BAIR/nerfacc/
tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1
.. _`vanilla Nerf`: https://arxiv.org/abs/2003.08934
docs/source/index.rst
View file @
127223b1
...
...
@@ -11,7 +11,7 @@ Using NerfAcc,
- The `Instant-NGP Nerf`_ model can be trained to *better quality* (+~0.7 PSNR) with *9/10th* of \
the training time (4.5 minutes) comparing to the official pure-CUDA implementation.
- The `D-Nerf`_ model for *dynamic* objects can also be trained in *1 hour* \
rather than *2 days* as in the paper, and with *better quality* (+~
0.5
PSNR).
rather than *2 days* as in the paper, and with *better quality* (+~
2.0
PSNR).
- Both *bounded* and *unbounded* scenes are supported.
**And it is pure Python interface with flexible APIs!**
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment