Collections: - Name: VGG Metadata: Training Data: ImageNet-1k Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x Xp GPUs Epochs: 100 Batch Size: 256 Architecture: - VGG Paper: URL: https://arxiv.org/abs/1409.1556 Title: "Very Deep Convolutional Networks for Large-Scale Image Recognition" README: configs/vgg/README.md Code: URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/vgg.py#L39 Version: v0.15.0 Models: - Name: vgg11_8xb32_in1k Metadata: FLOPs: 7630000000 Parameters: 132860000 In Collection: VGG Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 68.75 Top 5 Accuracy: 88.87 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth Config: configs/vgg/vgg11_8xb32_in1k.py - Name: vgg13_8xb32_in1k Metadata: FLOPs: 11340000000 Parameters: 133050000 In Collection: VGG Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 70.02 Top 5 Accuracy: 89.46 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth Config: configs/vgg/vgg13_8xb32_in1k.py - Name: vgg16_8xb32_in1k Metadata: FLOPs: 15500000000 Parameters: 138360000 In Collection: VGG Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 71.62 Top 5 Accuracy: 90.49 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth Config: configs/vgg/vgg16_8xb32_in1k.py - Name: vgg19_8xb32_in1k Metadata: FLOPs: 19670000000 Parameters: 143670000 In Collection: VGG Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 72.41 Top 5 Accuracy: 90.8 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.pth Config: configs/vgg/vgg19_8xb32_in1k.py - Name: vgg11bn_8xb32_in1k Metadata: FLOPs: 7640000000 Parameters: 132870000 In Collection: VGG Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 70.67 Top 5 Accuracy: 90.16 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth Config: configs/vgg/vgg11bn_8xb32_in1k.py - Name: vgg13bn_8xb32_in1k Metadata: FLOPs: 11360000000 Parameters: 133050000 In Collection: VGG Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 72.12 Top 5 Accuracy: 90.66 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth Config: configs/vgg/vgg13bn_8xb32_in1k.py - Name: vgg16bn_8xb32_in1k Metadata: FLOPs: 15530000000 Parameters: 138370000 In Collection: VGG Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 73.74 Top 5 Accuracy: 91.66 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth Config: configs/vgg/vgg16bn_8xb32_in1k.py - Name: vgg19bn_8xb32_in1k Metadata: FLOPs: 19700000000 Parameters: 143680000 In Collection: VGG Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 74.68 Top 5 Accuracy: 92.27 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth Config: configs/vgg/vgg19bn_8xb32_in1k.py