Collections: - Name: Shufflenet V2 Metadata: Training Data: ImageNet-1k Training Techniques: - SGD with Momentum - Weight Decay - No BN decay Training Resources: 8x 1080 GPUs Epochs: 300 Batch Size: 1024 Architecture: - Shufflenet V2 Paper: URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Ningning_Light-weight_CNN_Architecture_ECCV_2018_paper.pdf Title: "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" README: configs/shufflenet_v2/README.md Code: URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/shufflenet_v2.py#L134 Version: v0.15.0 Models: - Name: shufflenet-v2-1x_16xb64_in1k Metadata: FLOPs: 149000000 Parameters: 2280000 In Collection: Shufflenet V2 Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 69.55 Top 5 Accuracy: 88.92 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth Config: configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py