Collections: - Name: SEResNet Metadata: Training Data: ImageNet-1k Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Epochs: 140 Batch Size: 256 Architecture: - ResNet Paper: URL: https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html Title: "Squeeze-and-Excitation Networks" README: configs/seresnet/README.md Code: URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/seresnet.py#L58 Version: v0.15.0 Models: - Name: seresnet50_8xb32_in1k Metadata: FLOPs: 4130000000 Parameters: 28090000 In Collection: SEResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 77.74 Top 5 Accuracy: 93.84 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth Config: configs/seresnet/seresnet50_8xb32_in1k.py - Name: seresnet101_8xb32_in1k Metadata: FLOPs: 7860000000 Parameters: 49330000 In Collection: SEResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 78.26 Top 5 Accuracy: 94.07 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth Config: configs/seresnet/seresnet101_8xb32_in1k.py