Collections: - Name: MFF Metadata: Training Data: ImageNet-1k Training Techniques: - AdamW Training Resources: 8x A100-80G GPUs Architecture: - ViT Paper: Title: Improving Pixel-based MIM by Reducing Wasted Modeling Capability URL: https://arxiv.org/pdf/2308.00261.pdf README: configs/mff/README.md Models: - Name: mff_vit-base-p16_8xb512-amp-coslr-300e_in1k Metadata: Epochs: 300 Batch Size: 2048 FLOPs: 17581972224 Parameters: 85882692 Training Data: ImageNet-1k In Collection: MaskFeat Results: null Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k_20230801-3c1bcce4.pth Config: configs/mff/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k.py Downstream: - vit-base-p16_mff-300e-pre_8xb128-coslr-100e_in1k - vit-base-p16_mff-300e-pre_8xb2048-linear-coslr-90e_in1k - Name: mff_vit-base-p16_8xb512-amp-coslr-800e_in1k Metadata: Epochs: 800 Batch Size: 2048 FLOPs: 17581972224 Parameters: 85882692 Training Data: ImageNet-1k In Collection: MaskFeat Results: null Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-800e_in1k/mff_vit-base-p16_8xb512-amp-coslr-800e_in1k_20230801-3af7cd9d.pth Config: configs/mff/mff_vit-base-p16_8xb512-amp-coslr-800e_in1k.py Downstream: - vit-base-p16_mff-800e-pre_8xb128-coslr-100e_in1k - vit-base-p16_mff-800e-pre_8xb2048-linear-coslr-90e_in1k - Name: vit-base-p16_mff-300e-pre_8xb128-coslr-100e_in1k Metadata: Epochs: 100 Batch Size: 1024 FLOPs: 17581215744 Parameters: 86566120 Training Data: ImageNet-1k In Collection: MaskFeat Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.0 Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k/vit-base-p16_8xb128-coslr-100e_in1k/vit-base-p16_8xb128-coslr-100e_in1k_20230802-d746fdb7.pth Config: configs/mff/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py - Name: vit-base-p16_mff-800e-pre_8xb128-coslr-100e_in1k Metadata: Epochs: 100 Batch Size: 1024 FLOPs: 17581215744 Parameters: 86566120 Training Data: ImageNet-1k In Collection: MFF Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.7 Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-800e_in1k/vit-base-p16_8xb128-coslr-100e/vit-base-p16_8xb128-coslr-100e_20230802-6780e47d.pth Config: configs/mff/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py - Name: vit-base-p16_mff-300e-pre_8xb2048-linear-coslr-90e_in1k Metadata: Epochs: 90 Batch Size: 16384 FLOPs: 17581215744 Parameters: 86566120 Training Data: ImageNet-1k In Collection: MFF Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 64.2 Weights: Config: configs/mff/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py - Name: vit-base-p16_mff-800e-pre_8xb2048-linear-coslr-90e_in1k Metadata: Epochs: 90 Batch Size: 16384 FLOPs: 17581215744 Parameters: 86566120 Training Data: ImageNet-1k In Collection: MFF Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 68.3 Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k/vit-base-p16_8xb128-coslr-100e_in1k/vit-base-p16_8xb128-coslr-100e_in1k_20230802-d746fdb7.pth Config: configs/mff/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py