Collections: - Name: DeiT Metadata: Training Data: ImageNet-1k Architecture: - Layer Normalization - Scaled Dot-Product Attention - Attention Dropout - Multi-Head Attention Paper: Title: Training data-efficient image transformers & distillation through attention URL: https://arxiv.org/abs/2012.12877 README: configs/deit/README.md Code: URL: v0.19.0 Version: https://github.com/open-mmlab/mmpretrain/blob/v0.19.0/mmcls/models/backbones/deit.py Models: - Name: deit-tiny_4xb256_in1k Metadata: FLOPs: 1258219200 Parameters: 5717416 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 74.5 Top 5 Accuracy: 92.24 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny_pt-4xb256_in1k_20220218-13b382a0.pth Config: configs/deit/deit-tiny_4xb256_in1k.py - Name: deit-tiny-distilled_3rdparty_in1k Metadata: FLOPs: 1265371776 Parameters: 5910800 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 74.51 Top 5 Accuracy: 91.9 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny-distilled_3rdparty_pt-4xb256_in1k_20211216-c429839a.pth Config: configs/deit/deit-tiny-distilled_4xb256_in1k.py Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L108 - Name: deit-small_4xb256_in1k Metadata: FLOPs: 4607954304 Parameters: 22050664 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 80.69 Top 5 Accuracy: 95.06 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-small_pt-4xb256_in1k_20220218-9425b9bb.pth Config: configs/deit/deit-small_4xb256_in1k.py - Name: deit-small-distilled_3rdparty_in1k Metadata: FLOPs: 4632876288 Parameters: 22436432 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 81.17 Top 5 Accuracy: 95.4 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-small-distilled_3rdparty_pt-4xb256_in1k_20211216-4de1d725.pth Config: configs/deit/deit-small-distilled_4xb256_in1k.py Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L123 - Name: deit-base_16xb64_in1k Metadata: FLOPs: 17581972224 Parameters: 86567656 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 81.76 Top 5 Accuracy: 95.81 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base_pt-16xb64_in1k_20220216-db63c16c.pth Config: configs/deit/deit-base_16xb64_in1k.py - Name: deit-base_3rdparty_in1k Metadata: FLOPs: 17581972224 Parameters: 86567656 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 81.79 Top 5 Accuracy: 95.59 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_pt-16xb64_in1k_20211124-6f40c188.pth Config: configs/deit/deit-base_16xb64_in1k.py Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L93 - Name: deit-base-distilled_3rdparty_in1k Metadata: FLOPs: 17674283520 Parameters: 87338192 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.33 Top 5 Accuracy: 96.49 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_pt-16xb64_in1k_20211216-42891296.pth Config: configs/deit/deit-base-distilled_16xb64_in1k.py Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L138 - Name: deit-base_224px-pre_3rdparty_in1k-384px Metadata: FLOPs: 55538974464 Parameters: 86859496 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.04 Top 5 Accuracy: 96.31 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_ft-16xb32_in1k-384px_20211124-822d02f2.pth Config: configs/deit/deit-base_16xb32_in1k-384px.py Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L153 - Name: deit-base-distilled_224px-pre_3rdparty_in1k-384px Metadata: FLOPs: 55645294080 Parameters: 87630032 In Collection: DeiT Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 85.55 Top 5 Accuracy: 97.35 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_ft-16xb32_in1k-384px_20211216-e48d6000.pth Config: configs/deit/deit-base-distilled_16xb32_in1k-384px.py Converted From: Weights: https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L168