_base_ = ['../_base_/default_runtime.py'] # model settings model = dict( type='ImageClassifier', backbone=dict( type='VisionTransformer', arch='l', img_size=224, patch_size=16, drop_rate=0.1, pre_norm=True, ), ) test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'), dict(type='CenterCrop', crop_size=224), dict(type='PackInputs'), ] test_dataloader = dict( batch_size=64, num_workers=5, dataset=dict( type='ImageNet', data_root='data/imagenet', ann_file='meta/val.txt', data_prefix='val', pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), ) test_evaluator = None