_base_ = [ '../_base_/datasets/nlvr2.py', '../_base_/default_runtime.py', ] # model settings model = dict( type='BlipNLVR', vision_backbone=dict( type='VisionTransformer', arch='b', img_size=384, patch_size=16, out_type='raw', ), tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'), multimodal_backbone=dict( type='BertModel', config=dict( architectures=['BertModel'], attention_probs_dropout_prob=0.1, hidden_act='gelu', hidden_dropout_prob=0.1, hidden_size=768, initializer_range=0.02, intermediate_size=3072, layer_norm_eps=1e-12, max_position_embeddings=512, model_type='bert', num_attention_heads=12, num_hidden_layers=12, pad_token_id=0, add_type_embeddings=False, vocab_size=30524, encoder_width=768, add_cross_attention=True, nlvr=True), add_pooling_layer=False), ) # optimizer optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.05) optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer) param_scheduler = [ dict( type='CosineAnnealingLR', by_epoch=True, begin=0, end=10, ) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=10) val_cfg = dict() test_cfg = dict() default_hooks = dict(logger=dict(interval=1))