# optimizer optim_wrapper = dict( optimizer=dict(type='AdamW', lr=0.003, weight_decay=0.3), # specific to vit pretrain paramwise_cfg=dict(custom_keys={ '.cls_token': dict(decay_mult=0.0), '.pos_embed': dict(decay_mult=0.0) }), ) # learning policy param_scheduler = [ # warm up learning rate scheduler dict( type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=30, # update by iter convert_to_iter_based=True), # main learning rate scheduler dict( type='CosineAnnealingLR', T_max=270, by_epoch=True, begin=30, end=300, ) ] # train, val, test setting train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1) val_cfg = dict() test_cfg = dict() # NOTE: `auto_scale_lr` is for automatically scaling LR, # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=4096)