# optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.8, momentum=0.9, weight_decay=5e-5)) # learning policy param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=True, begin=0, end=5), dict(type='CosineAnnealingLR', T_max=95, by_epoch=True, begin=5, end=100) ] # train, val, test setting train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1) val_cfg = dict() test_cfg = dict() # NOTE: `auto_scale_lr` is for automatically scaling LR, # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=1024)