# model settings model = dict( type='ImageClassifier', backbone=dict( type='LeViT', arch='256', img_size=224, patch_size=16, drop_path_rate=0, attn_ratio=2, mlp_ratio=2, out_indices=(2, )), neck=dict(type='GlobalAveragePooling'), head=dict( type='LeViTClsHead', num_classes=1000, in_channels=512, distillation=True, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, loss_weight=1.0), topk=(1, 5), ), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0), ]))