# dataset settings dataset_type = 'VOC' data_preprocessor = dict( num_classes=20, # RGB format normalization parameters mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], # convert image from BGR to RGB to_rgb=True, # generate onehot-format labels for multi-label classification. to_onehot=True, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', scale=224), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=256, edge='short'), dict(type='CenterCrop', crop_size=224), dict( type='PackInputs', # `gt_label_difficult` is needed for VOC evaluation meta_keys=('sample_idx', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'gt_label_difficult')), ] train_dataloader = dict( batch_size=16, num_workers=5, dataset=dict( type=dataset_type, data_root='data/VOC2007', split='trainval', pipeline=train_pipeline), sampler=dict(type='DefaultSampler', shuffle=True), ) val_dataloader = dict( batch_size=16, num_workers=5, dataset=dict( type=dataset_type, data_root='data/VOC2007', split='test', pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), ) test_dataloader = val_dataloader # calculate precision_recall_f1 and mAP val_evaluator = [ dict(type='VOCMultiLabelMetric'), dict(type='VOCMultiLabelMetric', average='micro'), dict(type='VOCAveragePrecision') ] test_dataloader = val_dataloader test_evaluator = val_evaluator