# dataset settings dataset_type = 'ImageNet' data_root = 'data/imagenet/' data_preprocessor = dict( type='SelfSupDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=224, crop_ratio_range=(0.2, 1.0), backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5), dict(type='PackInputs') ] train_dataloader = dict( batch_size=512, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), dataset=dict( type=dataset_type, data_root=data_root, split='train', pipeline=train_pipeline))