# dataset settings dataset_type = 'ImageNet' data_root = 'data/imagenet/' data_preprocessor = dict( type='TwoNormDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], # clip mean & std second_mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], second_std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4, hue=0.), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='RandomResizedCropAndInterpolationWithTwoPic', size=224, second_size=224, interpolation='bicubic', second_interpolation='bicubic', scale=(0.2, 1.0)), dict( type='BEiTMaskGenerator', input_size=(14, 14), num_masking_patches=75, max_num_patches=75, min_num_patches=16), dict(type='PackInputs') ] train_dataloader = dict( batch_size=256, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='default_collate'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='meta/train.txt', data_prefix=dict(img_path='train/'), pipeline=train_pipeline))