_base_ = [ 'configs/_base_/models/inception_v3.py', 'configs/_base_/datasets/tiny_imagenet_bs32.py', 'configs/_base_/schedules/imagenet_bs256_coslr.py', 'configs/_base_/default_runtime.py', ] #import os #import torch #torch.backends.cuda.matmul.allow_tf32=True #torch.backends.cudnn.allow_tf32=True train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', scale=299), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=342, edge='short'), dict(type='CenterCrop', crop_size=299), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # optimizer optim_wrapper = dict( #type='AmpOptimWrapper', #dtype='bfloat16', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)) # 自定义hooks,添加ProfilerHook, 只在rank0启用 #custom_hooks = [ # dict(type='ProfilerHook', by_epoch=False, # profile_times=5, # on_trace_ready=dict(type="log_trace", sort_by="self_cuda_time_total"), # json_trace_path=f"trace_inceptionv3_tf32.json", # activity_with_cuda=True, # schedule=dict(wait=3, warmup=1, active=1, repeat=1)) # 这样的设置是10次 #] if os.environ['LOCAL_RANK'] == '0' else []