_base_ = [ 'configs/_base_/models/resnet50.py', 'configs/_base_/datasets/tiny_imagenet_bs32.py', 'configs/_base_/schedules/imagenet_bs256.py', 'configs/_base_/default_runtime.py' ] import torch torch.backends.cuda.matmul.allow_tf32=True torch.backends.cudnn.allow_tf32=True # optimizer optim_wrapper = dict( #type='AmpOptimWrapper', #dtype='float16', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)) custom_hooks = [ dict(type='ProfilerHook', by_epoch=False, profile_times=12, with_stack=True, with_flops=True, on_trace_ready=dict(type="log_trace", sort_by="self_cuda_time_total"), activity_with_cuda=True, schedule=dict(wait=1, warmup=1, active=10, repeat=1)) ]