_base_ = [ 'configs/_base_/models/tiny_efficientnet_b2.py', 'configs/_base_/datasets/tiny_imagenet_bs32.py', 'configs/_base_/schedules/imagenet_bs256.py', 'configs/_base_/default_runtime.py', ] # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetRandomCrop', scale=260), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetCenterCrop', crop_size=260), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) root@K100_AI02:/renzhc/workdir/mmpretrain# cat configs/_base_/models/tiny_efficientnet_b2.py # model settings model = dict( type='ImageClassifier', backbone=dict(type='EfficientNet', arch='b2'), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=200, in_channels=1408, loss=dict(type='CrossEntropyLoss', loss_weight=1.0), topk=(1, 5), ))