Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='SelfSupDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
view_pipeline = [
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
split='train',
pipeline=train_pipeline))
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='SelfSupDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=512,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
split='train',
pipeline=train_pipeline))
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='SelfSupDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
view_pipeline1 = [
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.2, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=1.),
dict(type='Solarize', thr=128, prob=0.),
dict(type='RandomFlip', prob=0.5),
]
view_pipeline2 = [
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.2, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.1),
dict(type='Solarize', thr=128, prob=0.2),
dict(type='RandomFlip', prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiView',
num_views=[1, 1],
transforms=[view_pipeline1, view_pipeline2]),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=512,
num_workers=8,
persistent_workers=True,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
split='train',
pipeline=train_pipeline))
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='AutoAugment',
policies='imagenet',
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
to_rgb=True)
image_size = 224
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=image_size,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
# dict(
# type='RandAugment',
# policies={{_base_.rand_increasing_policies}},
# num_policies=2,
# total_level=10,
# magnitude_level=9,
# magnitude_std=0.5,
# hparams=dict(
# pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
# interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean'][::-1],
fill_std=img_norm_cfg['std'][::-1]),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(image_size, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=image_size),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='accuracy')
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
to_rgb=True)
image_size = 384
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=image_size,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
# dict(
# type='RandAugment',
# policies={{_base_.rand_increasing_policies}},
# num_policies=2,
# total_level=10,
# magnitude_level=9,
# magnitude_std=0.5,
# hparams=dict(
# pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
# interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean'][::-1],
fill_std=img_norm_cfg['std'][::-1]),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(image_size, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=image_size),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='accuracy')
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
to_rgb=True)
image_size = 448
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=image_size,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
# dict(
# type='RandAugment',
# policies={{_base_.rand_increasing_policies}},
# num_policies=2,
# total_level=10,
# magnitude_level=9,
# magnitude_std=0.5,
# hparams=dict(
# pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
# interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean'][::-1],
fill_std=img_norm_cfg['std'][::-1]),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(image_size, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=image_size),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='accuracy')
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=233,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=224,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=384,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=384,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=384),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=256,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=292,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/val.txt',
data_prefix='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
# Google research usually use the below normalization setting.
data_preprocessor = dict(
num_classes=1000,
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='AutoAugment',
policies='imagenet',
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=256,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=292, # ( 256 / 224 * 256 )
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment