Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
# model settings
model = dict(
type='iTPN',
backbone=dict(
type='iTPNHiViT',
arch='base',
reconstruction_type='pixel',
mask_ratio=0.75),
neck=dict(
type='iTPNPretrainDecoder',
num_patches=196,
patch_size=16,
in_chans=3,
embed_dim=512,
decoder_embed_dim=512,
decoder_depth=6,
decoder_num_heads=16,
mlp_ratio=4.,
reconstruction_type='pixel',
# transformer pyramid
fpn_dim=256,
fpn_depth=2,
num_outs=3,
),
head=dict(
type='MAEPretrainHead',
norm_pix=True,
patch_size=16,
loss=dict(type='PixelReconstructionLoss', criterion='L2')),
init_cfg=[
dict(type='Xavier', layer='Linear', distribution='uniform'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
])
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='LeViT',
arch='256',
img_size=224,
patch_size=16,
drop_path_rate=0,
attn_ratio=2,
mlp_ratio=2,
out_indices=(2, )),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LeViTClsHead',
num_classes=1000,
in_channels=512,
distillation=True,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0),
]))
# model settings
model = dict(
type='MAE',
backbone=dict(
type='MAEHiViT', patch_size=16, arch='base', mask_ratio=0.75),
neck=dict(
type='MAEPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=512,
decoder_embed_dim=512,
decoder_depth=6,
decoder_num_heads=16,
mlp_ratio=4.,
),
head=dict(
type='MAEPretrainHead',
norm_pix=True,
patch_size=16,
loss=dict(type='PixelReconstructionLoss', criterion='L2')),
init_cfg=[
dict(type='Xavier', layer='Linear', distribution='uniform'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
])
# model settings
model = dict(
type='MAE',
backbone=dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75),
neck=dict(
type='MAEPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.,
),
head=dict(
type='MAEPretrainHead',
norm_pix=True,
patch_size=16,
loss=dict(type='PixelReconstructionLoss', criterion='L2')),
init_cfg=[
dict(type='Xavier', layer='Linear', distribution='uniform'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
])
model = dict(
type='ImageClassifier',
backbone=dict(
type='MixMIMTransformer', arch='B', drop_rate=0.0, drop_path_rate=0.1),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
init_cfg=None,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='MlpMixer',
arch='b',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=dict(type='GlobalAveragePooling', dim=1),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='MlpMixer',
arch='l',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=dict(type='GlobalAveragePooling', dim=1),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV2', widen_factor=1.0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV3', arch='large'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='StackedLinearClsHead',
num_classes=1000,
in_channels=960,
mid_channels=[1280],
dropout_rate=0.2,
act_cfg=dict(type='HSwish'),
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=dict(
type='Normal', layer='Linear', mean=0., std=0.01, bias=0.),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV3', arch='small_050'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='StackedLinearClsHead',
num_classes=1000,
in_channels=288,
mid_channels=[1024],
dropout_rate=0.2,
act_cfg=dict(type='HSwish'),
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=dict(
type='Normal', layer='Linear', mean=0., std=0.01, bias=0.),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV3', arch='small_075'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='StackedLinearClsHead',
num_classes=1000,
in_channels=432,
mid_channels=[1024],
dropout_rate=0.2,
act_cfg=dict(type='HSwish'),
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=dict(
type='Normal', layer='Linear', mean=0., std=0.01, bias=0.),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV3', arch='small'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='StackedLinearClsHead',
num_classes=10,
in_channels=576,
mid_channels=[1280],
act_cfg=dict(type='HSwish'),
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV3', arch='small'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='StackedLinearClsHead',
num_classes=1000,
in_channels=576,
mid_channels=[1024],
dropout_rate=0.2,
act_cfg=dict(type='HSwish'),
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=dict(
type='Normal', layer='Linear', mean=0., std=0.01, bias=0.),
topk=(1, 5)))
model = dict(
type='ImageClassifier',
backbone=dict(
type='MobileOne',
arch='s0',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
),
topk=(1, 5),
))
model = dict(
type='ImageClassifier',
backbone=dict(
type='MobileOne',
arch='s1',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
),
topk=(1, 5),
))
model = dict(
type='ImageClassifier',
backbone=dict(
type='MobileOne',
arch='s2',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
),
topk=(1, 5),
))
model = dict(
type='ImageClassifier',
backbone=dict(
type='MobileOne',
arch='s3',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
),
topk=(1, 5),
))
model = dict(
type='ImageClassifier',
backbone=dict(
type='MobileOne',
arch='s4',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileViT', arch='small'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=640,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileViT', arch='x_small'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=384,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment