Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b2'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1408,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b3'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b4'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1792,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b5'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b6'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2304,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b7'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2560,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b8'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2816,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
# `em` means EfficientNet-EdgeTPU-M arch
backbone=dict(type='EfficientNet', arch='em', act_cfg=dict(type='ReLU')),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
# `es` means EfficientNet-EdgeTPU-S arch
backbone=dict(type='EfficientNet', arch='es', act_cfg=dict(type='ReLU')),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='l2'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=5504,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='b0'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='b1'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='b2'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1408,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='b3'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='l'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='m'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='s'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='xl'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
model = dict(
type='ImageClassifier',
backbone=dict(
type='BEiTViT',
arch='eva-g',
img_size=224,
patch_size=14,
layer_scale_init_value=0.0,
out_type='avg_featmap',
use_abs_pos_emb=True,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
),
neck=None,
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1408,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='BEiTViT',
arch='l',
img_size=224,
patch_size=14,
layer_scale_init_value=0.0,
out_type='avg_featmap',
use_abs_pos_emb=True,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
layer_cfgs=dict(bias=True),
),
neck=None,
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment