Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
MMPretrain-MMCV
Commits
dff2c686
Commit
dff2c686
authored
Sep 03, 2024
by
renzhc
Browse files
first commit
parent
8f9dd0ed
Pipeline
#1665
canceled with stages
Changes
1000
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
386 additions
and
0 deletions
+386
-0
configs/_base_/models/davit/davit-tiny.py
configs/_base_/models/davit/davit-tiny.py
+16
-0
configs/_base_/models/deit3/deit3-base-p16-224.py
configs/_base_/models/deit3/deit3-base-p16-224.py
+24
-0
configs/_base_/models/deit3/deit3-base-p16-384.py
configs/_base_/models/deit3/deit3-base-p16-384.py
+24
-0
configs/_base_/models/deit3/deit3-huge-p14-224.py
configs/_base_/models/deit3/deit3-huge-p14-224.py
+24
-0
configs/_base_/models/deit3/deit3-large-p16-224.py
configs/_base_/models/deit3/deit3-large-p16-224.py
+24
-0
configs/_base_/models/deit3/deit3-large-p16-384.py
configs/_base_/models/deit3/deit3-large-p16-384.py
+24
-0
configs/_base_/models/deit3/deit3-medium-p16-224.py
configs/_base_/models/deit3/deit3-medium-p16-224.py
+24
-0
configs/_base_/models/deit3/deit3-small-p16-224.py
configs/_base_/models/deit3/deit3-small-p16-224.py
+24
-0
configs/_base_/models/deit3/deit3-small-p16-384.py
configs/_base_/models/deit3/deit3-small-p16-384.py
+24
-0
configs/_base_/models/densenet/densenet121.py
configs/_base_/models/densenet/densenet121.py
+11
-0
configs/_base_/models/densenet/densenet161.py
configs/_base_/models/densenet/densenet161.py
+11
-0
configs/_base_/models/densenet/densenet169.py
configs/_base_/models/densenet/densenet169.py
+11
-0
configs/_base_/models/densenet/densenet201.py
configs/_base_/models/densenet/densenet201.py
+11
-0
configs/_base_/models/edgenext/edgenext-base.py
configs/_base_/models/edgenext/edgenext-base.py
+23
-0
configs/_base_/models/edgenext/edgenext-small.py
configs/_base_/models/edgenext/edgenext-small.py
+23
-0
configs/_base_/models/edgenext/edgenext-xsmall.py
configs/_base_/models/edgenext/edgenext-xsmall.py
+23
-0
configs/_base_/models/edgenext/edgenext-xxsmall.py
configs/_base_/models/edgenext/edgenext-xxsmall.py
+23
-0
configs/_base_/models/efficientformer-l1.py
configs/_base_/models/efficientformer-l1.py
+18
-0
configs/_base_/models/efficientnet_b0.py
configs/_base_/models/efficientnet_b0.py
+12
-0
configs/_base_/models/efficientnet_b1.py
configs/_base_/models/efficientnet_b1.py
+12
-0
No files found.
Too many changes to show.
To preserve performance only
1000 of 1000+
files are displayed.
Plain diff
Email patch
configs/_base_/models/davit/davit-tiny.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DaViT'
,
arch
=
't'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.1
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/deit3/deit3-base-p16-224.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DeiT3'
,
arch
=
'b'
,
img_size
=
224
,
patch_size
=
16
,
drop_path_rate
=
0.2
),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
.
02
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/deit3/deit3-base-p16-384.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DeiT3'
,
arch
=
'b'
,
img_size
=
384
,
patch_size
=
16
,
drop_path_rate
=
0.15
),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
.
02
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/deit3/deit3-huge-p14-224.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DeiT3'
,
arch
=
'h'
,
img_size
=
224
,
patch_size
=
14
,
drop_path_rate
=
0.55
),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
1280
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
.
02
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/deit3/deit3-large-p16-224.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DeiT3'
,
arch
=
'l'
,
img_size
=
224
,
patch_size
=
16
,
drop_path_rate
=
0.45
),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
.
02
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/deit3/deit3-large-p16-384.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DeiT3'
,
arch
=
'l'
,
img_size
=
384
,
patch_size
=
16
,
drop_path_rate
=
0.4
),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
.
02
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/deit3/deit3-medium-p16-224.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DeiT3'
,
arch
=
'm'
,
img_size
=
224
,
patch_size
=
16
,
drop_path_rate
=
0.2
),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
512
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
.
02
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/deit3/deit3-small-p16-224.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DeiT3'
,
arch
=
's'
,
img_size
=
224
,
patch_size
=
16
,
drop_path_rate
=
0.05
),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
384
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
.
02
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/deit3/deit3-small-p16-384.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DeiT3'
,
arch
=
's'
,
img_size
=
384
,
patch_size
=
16
,
drop_path_rate
=
0.0
),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
384
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
.
02
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]))
configs/_base_/models/densenet/densenet121.py
0 → 100644
View file @
dff2c686
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DenseNet'
,
arch
=
'121'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
configs/_base_/models/densenet/densenet161.py
0 → 100644
View file @
dff2c686
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DenseNet'
,
arch
=
'161'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2208
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
configs/_base_/models/densenet/densenet169.py
0 → 100644
View file @
dff2c686
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DenseNet'
,
arch
=
'169'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1664
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
configs/_base_/models/densenet/densenet201.py
0 → 100644
View file @
dff2c686
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DenseNet'
,
arch
=
'201'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1920
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
configs/_base_/models/edgenext/edgenext-base.py
0 → 100644
View file @
dff2c686
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EdgeNeXt'
,
arch
=
'base'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.1
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
584
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
configs/_base_/models/edgenext/edgenext-small.py
0 → 100644
View file @
dff2c686
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EdgeNeXt'
,
arch
=
'small'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.1
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
304
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
configs/_base_/models/edgenext/edgenext-xsmall.py
0 → 100644
View file @
dff2c686
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EdgeNeXt'
,
arch
=
'xsmall'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.1
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
192
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
configs/_base_/models/edgenext/edgenext-xxsmall.py
0 → 100644
View file @
dff2c686
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EdgeNeXt'
,
arch
=
'xxsmall'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.1
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
168
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
configs/_base_/models/efficientformer-l1.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientFormer'
,
arch
=
'l1'
,
drop_path_rate
=
0
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'GroupNorm'
],
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-5
)
]),
neck
=
dict
(
type
=
'GlobalAveragePooling'
,
dim
=
1
),
head
=
dict
(
type
=
'EfficientFormerClsHead'
,
in_channels
=
448
,
num_classes
=
1000
))
configs/_base_/models/efficientnet_b0.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b0'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1280
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/efficientnet_b1.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b1'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1280
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
Prev
1
2
3
4
5
6
7
8
9
10
…
50
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment