Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
model = dict(
type='ImageClassifier',
backbone=dict(
type='DaViT', arch='t', out_indices=(3, ), drop_path_rate=0.1),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='DeiT3',
arch='b',
img_size=224,
patch_size=16,
drop_path_rate=0.2),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='DeiT3',
arch='b',
img_size=384,
patch_size=16,
drop_path_rate=0.15),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='DeiT3',
arch='h',
img_size=224,
patch_size=14,
drop_path_rate=0.55),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='DeiT3',
arch='l',
img_size=224,
patch_size=16,
drop_path_rate=0.45),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='DeiT3',
arch='l',
img_size=384,
patch_size=16,
drop_path_rate=0.4),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='DeiT3',
arch='m',
img_size=224,
patch_size=16,
drop_path_rate=0.2),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=512,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='DeiT3',
arch='s',
img_size=224,
patch_size=16,
drop_path_rate=0.05),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=384,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='DeiT3',
arch='s',
img_size=384,
patch_size=16,
drop_path_rate=0.0),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=384,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='DenseNet', arch='121'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='DenseNet', arch='161'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2208,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='DenseNet', arch='169'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1664,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='DenseNet', arch='201'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1920,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='EdgeNeXt',
arch='base',
out_indices=(3, ),
drop_path_rate=0.1,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=584,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='EdgeNeXt',
arch='small',
out_indices=(3, ),
drop_path_rate=0.1,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=304,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='EdgeNeXt',
arch='xsmall',
out_indices=(3, ),
drop_path_rate=0.1,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=192,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='EdgeNeXt',
arch='xxsmall',
out_indices=(3, ),
drop_path_rate=0.1,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=168,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
model = dict(
type='ImageClassifier',
backbone=dict(
type='EfficientFormer',
arch='l1',
drop_path_rate=0,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
dict(type='Constant', layer=['LayerScale'], val=1e-5)
]),
neck=dict(type='GlobalAveragePooling', dim=1),
head=dict(
type='EfficientFormerClsHead', in_channels=448, num_classes=1000))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b0'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b1'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment