Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs64.py',
'../_base_/schedules/imagenet_bs2048.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet21k_bs128.py',
'../_base_/schedules/imagenet_bs1024_coslr.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(head=dict(num_classes=21843))
# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=90)
_base_ = [
'../_base_/models/resnet50_cifar_mixup.py',
'../_base_/datasets/cifar10_bs16.py',
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_cifar.py', '../_base_/datasets/cifar10_bs16.py',
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_cifar.py',
'../_base_/datasets/cifar100_bs16.py',
'../_base_/schedules/cifar10_bs128.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(head=dict(num_classes=100))
# schedule settings
optim_wrapper = dict(optimizer=dict(weight_decay=0.0005))
param_scheduler = dict(
type='MultiStepLR',
by_epoch=True,
milestones=[60, 120, 160],
gamma=0.2,
)
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/imagenet_bs256_rsb_a12.py',
'../_base_/schedules/imagenet_bs2048_rsb.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(
norm_cfg=dict(type='SyncBN', requires_grad=True),
drop_path_rate=0.05,
),
head=dict(
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
use_sigmoid=True,
)),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.2),
dict(type='CutMix', alpha=1.0)
]),
)
# dataset settings
train_dataloader = dict(sampler=dict(type='RepeatAugSampler', shuffle=True))
# schedule settings
optim_wrapper = dict(
optimizer=dict(weight_decay=0.01),
paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.),
)
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=5,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=595,
eta_min=1.0e-6,
by_epoch=True,
begin=5,
end=600)
]
train_cfg = dict(by_epoch=True, max_epochs=600)
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/imagenet_bs256_rsb_a12.py',
'../_base_/schedules/imagenet_bs2048_rsb.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(
norm_cfg=dict(type='SyncBN', requires_grad=True),
drop_path_rate=0.05,
),
head=dict(loss=dict(use_sigmoid=True)),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.1),
dict(type='CutMix', alpha=1.0)
]))
# dataset settings
train_dataloader = dict(sampler=dict(type='RepeatAugSampler', shuffle=True))
# schedule settings
optim_wrapper = dict(
paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.))
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=5,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=295,
eta_min=1.0e-6,
by_epoch=True,
begin=5,
end=300)
]
train_cfg = dict(by_epoch=True, max_epochs=300)
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/imagenet_bs256_rsb_a3.py',
'../_base_/schedules/imagenet_bs2048_rsb.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(norm_cfg=dict(type='SyncBN', requires_grad=True)),
head=dict(loss=dict(use_sigmoid=True)),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.1),
dict(type='CutMix', alpha=1.0)
]),
)
# schedule settings
optim_wrapper = dict(
optimizer=dict(lr=0.008),
paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.),
)
_base_ = 'resnet50_8xb32-coslr_in1k.py'
# Precise BN hook will update the bn stats, so this hook should be executed
# before CheckpointHook(priority of 'VERY_LOW') and
# EMAHook(priority of 'NORMAL') So set the priority of PreciseBNHook to
# 'ABOVENORMAL' here.
custom_hooks = [
dict(
type='PreciseBNHook',
num_samples=8192,
interval=1,
priority='ABOVE_NORMAL')
]
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256_coslr.py',
'../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_cutmix.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = ['./resnet50_8xb32_in1k.py']
# schedule settings
optim_wrapper = dict(type='AmpOptimWrapper', loss_scale='dynamic')
_base_ = ['./resnet50_8xb32_in1k.py']
# schedule settings
optim_wrapper = dict(type='AmpOptimWrapper', loss_scale=512.)
_base_ = [
'../_base_/models/resnet50_label_smooth.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_mixup.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/cub_bs8_448.py',
'../_base_/schedules/cub_bs64.py',
'../_base_/default_runtime.py',
]
# model settings
# use pre-train weight converted from https://github.com/Alibaba-MIIL/ImageNet21K # noqa
pretrained = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth' # noqa
model = dict(
type='ImageClassifier',
backbone=dict(
init_cfg=dict(
type='Pretrained', checkpoint=pretrained, prefix='backbone')),
head=dict(num_classes=200, ))
# runtime settings
default_hooks = dict(logger=dict(type='LoggerHook', interval=20))
_base_ = [
'../_base_/models/resnetv1c50.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
model = dict(backbone=dict(depth=101))
_base_ = [
'../_base_/models/resnetv1c50.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
model = dict(backbone=dict(depth=152))
_base_ = [
'../_base_/models/resnetv1c50.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment