Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VGG', depth=19, num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VGG', depth=19, norm_cfg=dict(type='BN'), num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PyramidVig',
arch='base',
k=9,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='BN'),
graph_conv_type='mr',
graph_conv_bias=True,
epsilon=0.2,
use_stochastic=False,
drop_path=0.1,
norm_eval=False,
frozen_stages=0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='VigClsHead',
num_classes=1000,
in_channels=1024,
hidden_dim=1024,
act_cfg=dict(type='GELU'),
dropout=0.,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PyramidVig',
arch='medium',
k=9,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='BN'),
graph_conv_type='mr',
graph_conv_bias=True,
epsilon=0.2,
use_stochastic=False,
drop_path=0.1,
norm_eval=False,
frozen_stages=0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='VigClsHead',
num_classes=1000,
in_channels=768,
hidden_dim=1024,
act_cfg=dict(type='GELU'),
dropout=0.,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PyramidVig',
arch='small',
k=9,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='BN'),
graph_conv_type='mr',
graph_conv_bias=True,
epsilon=0.2,
use_stochastic=False,
drop_path=0.1,
norm_eval=False,
frozen_stages=0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='VigClsHead',
num_classes=1000,
in_channels=640,
hidden_dim=1024,
act_cfg=dict(type='GELU'),
dropout=0.,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PyramidVig',
arch='tiny',
k=9,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='BN'),
graph_conv_type='mr',
graph_conv_bias=True,
epsilon=0.2,
use_stochastic=False,
drop_path=0.1,
norm_eval=False,
frozen_stages=0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='VigClsHead',
num_classes=1000,
in_channels=384,
hidden_dim=1024,
act_cfg=dict(type='GELU'),
dropout=0.,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
model = dict(
type='ImageClassifier',
backbone=dict(
type='Vig',
arch='base',
k=9,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='BN'),
graph_conv_type='mr',
graph_conv_bias=True,
epsilon=0.2,
use_dilation=True,
use_stochastic=False,
drop_path=0.1,
relative_pos=False,
norm_eval=False,
frozen_stages=0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='VigClsHead',
num_classes=1000,
in_channels=640,
hidden_dim=1024,
act_cfg=dict(type='GELU'),
dropout=0.,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
model = dict(
type='ImageClassifier',
backbone=dict(
type='Vig',
arch='small',
k=9,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='BN'),
graph_conv_type='mr',
graph_conv_bias=True,
epsilon=0.2,
use_dilation=True,
use_stochastic=False,
drop_path=0.1,
relative_pos=False,
norm_eval=False,
frozen_stages=0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='VigClsHead',
num_classes=1000,
in_channels=320,
hidden_dim=1024,
act_cfg=dict(type='GELU'),
dropout=0.,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
model = dict(
type='ImageClassifier',
backbone=dict(
type='Vig',
arch='tiny',
k=9,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='BN'),
graph_conv_type='mr',
graph_conv_bias=True,
epsilon=0.2,
use_dilation=True,
use_stochastic=False,
drop_path=0.1,
relative_pos=False,
norm_eval=False,
frozen_stages=0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='VigClsHead',
num_classes=1000,
in_channels=192,
hidden_dim=1024,
act_cfg=dict(type='GELU'),
dropout=0.,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='b',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1,
mode='classy_vision'),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='b',
img_size=224,
patch_size=32,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='l',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='l',
img_size=224,
patch_size=32,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(3, ),
stem_channels=64,
base_channels=128,
expansion=2,
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# optimizer
optim_wrapper = dict(
optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))
# learning policy
param_scheduler = dict(
type='MultiStepLR', by_epoch=True, milestones=[100, 150], gamma=0.1)
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=200, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=128)
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True))
# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=0.01,
by_epoch=True,
begin=0,
end=5,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=95,
by_epoch=True,
begin=5,
end=100,
)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=64)
optim_wrapper = dict(
optimizer=dict(
type='AdamW',
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
lr=5e-4 * 128 * 8 / 512,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999)),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
}),
)
# learning policy
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-3,
by_epoch=True,
begin=0,
end=5,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=295,
eta_min=1e-5,
by_epoch=True,
begin=5,
end=300)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=1024)
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
optim_wrapper = dict(
optimizer=dict(
type='AdamW',
lr=5e-4 * 1024 / 512,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999)),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
flat_decay_mult=0.0,
custom_keys={
'.pos_embed': dict(decay_mult=0.0),
'.relative_position_bias_table': dict(decay_mult=0.0)
}),
)
# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=1e-3,
by_epoch=True,
end=20,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(type='CosineAnnealingLR', eta_min=1e-5, by_epoch=True, begin=20)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=1024)
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
# schedule settings
optim_wrapper = dict(
optimizer=dict(
type='AdamW',
lr=5e-4 * 2048 / 512,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999)),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}),
clip_grad=dict(max_norm=1.0),
)
# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=1e-8 / 2e-3,
by_epoch=True,
end=70,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(type='CosineAnnealingLR', eta_min=1e-5, by_epoch=True, begin=70)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=1024)
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
optim_wrapper = dict(
optimizer=dict(
type='AdamW',
lr=5e-4 * 1024 / 512,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999)),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
flat_decay_mult=0.0,
custom_keys={
'.absolute_pos_embed': dict(decay_mult=0.0),
'.relative_position_bias_table': dict(decay_mult=0.0)
}),
)
# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=1e-3,
by_epoch=True,
end=20,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(type='CosineAnnealingLR', eta_min=1e-5, by_epoch=True, begin=20)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=1024)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment