Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
MMPretrain-MMCV
Commits
dff2c686
Commit
dff2c686
authored
Sep 03, 2024
by
renzhc
Browse files
first commit
parent
8f9dd0ed
Pipeline
#1665
canceled with stages
Changes
1000
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
580 additions
and
0 deletions
+580
-0
configs/_base_/models/vgg19.py
configs/_base_/models/vgg19.py
+10
-0
configs/_base_/models/vgg19bn.py
configs/_base_/models/vgg19bn.py
+11
-0
configs/_base_/models/vig/pyramid_vig_base.py
configs/_base_/models/vig/pyramid_vig_base.py
+32
-0
configs/_base_/models/vig/pyramid_vig_medium.py
configs/_base_/models/vig/pyramid_vig_medium.py
+32
-0
configs/_base_/models/vig/pyramid_vig_small.py
configs/_base_/models/vig/pyramid_vig_small.py
+32
-0
configs/_base_/models/vig/pyramid_vig_tiny.py
configs/_base_/models/vig/pyramid_vig_tiny.py
+32
-0
configs/_base_/models/vig/vig_base.py
configs/_base_/models/vig/vig_base.py
+33
-0
configs/_base_/models/vig/vig_small.py
configs/_base_/models/vig/vig_small.py
+33
-0
configs/_base_/models/vig/vig_tiny.py
configs/_base_/models/vig/vig_tiny.py
+33
-0
configs/_base_/models/vit-base-p16.py
configs/_base_/models/vit-base-p16.py
+25
-0
configs/_base_/models/vit-base-p32.py
configs/_base_/models/vit-base-p32.py
+24
-0
configs/_base_/models/vit-large-p16.py
configs/_base_/models/vit-large-p16.py
+24
-0
configs/_base_/models/vit-large-p32.py
configs/_base_/models/vit-large-p32.py
+24
-0
configs/_base_/models/wide-resnet50.py
configs/_base_/models/wide-resnet50.py
+20
-0
configs/_base_/schedules/cifar10_bs128.py
configs/_base_/schedules/cifar10_bs128.py
+15
-0
configs/_base_/schedules/cub_bs64.py
configs/_base_/schedules/cub_bs64.py
+34
-0
configs/_base_/schedules/imagenet_bs1024_adamw_conformer.py
configs/_base_/schedules/imagenet_bs1024_adamw_conformer.py
+43
-0
configs/_base_/schedules/imagenet_bs1024_adamw_hivit.py
configs/_base_/schedules/imagenet_bs1024_adamw_hivit.py
+41
-0
configs/_base_/schedules/imagenet_bs1024_adamw_revvit.py
configs/_base_/schedules/imagenet_bs1024_adamw_revvit.py
+41
-0
configs/_base_/schedules/imagenet_bs1024_adamw_swin.py
configs/_base_/schedules/imagenet_bs1024_adamw_swin.py
+41
-0
No files found.
Too many changes to show.
To preserve performance only
1000 of 1000+
files are displayed.
Plain diff
Email patch
configs/_base_/models/vgg19.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'VGG'
,
depth
=
19
,
num_classes
=
1000
),
neck
=
None
,
head
=
dict
(
type
=
'ClsHead'
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/vgg19bn.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'VGG'
,
depth
=
19
,
norm_cfg
=
dict
(
type
=
'BN'
),
num_classes
=
1000
),
neck
=
None
,
head
=
dict
(
type
=
'ClsHead'
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/vig/pyramid_vig_base.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'PyramidVig'
,
arch
=
'base'
,
k
=
9
,
act_cfg
=
dict
(
type
=
'GELU'
),
norm_cfg
=
dict
(
type
=
'BN'
),
graph_conv_type
=
'mr'
,
graph_conv_bias
=
True
,
epsilon
=
0.2
,
use_stochastic
=
False
,
drop_path
=
0.1
,
norm_eval
=
False
,
frozen_stages
=
0
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'VigClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
hidden_dim
=
1024
,
act_cfg
=
dict
(
type
=
'GELU'
),
dropout
=
0.
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
),
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/vig/pyramid_vig_medium.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'PyramidVig'
,
arch
=
'medium'
,
k
=
9
,
act_cfg
=
dict
(
type
=
'GELU'
),
norm_cfg
=
dict
(
type
=
'BN'
),
graph_conv_type
=
'mr'
,
graph_conv_bias
=
True
,
epsilon
=
0.2
,
use_stochastic
=
False
,
drop_path
=
0.1
,
norm_eval
=
False
,
frozen_stages
=
0
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'VigClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
hidden_dim
=
1024
,
act_cfg
=
dict
(
type
=
'GELU'
),
dropout
=
0.
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
),
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/vig/pyramid_vig_small.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'PyramidVig'
,
arch
=
'small'
,
k
=
9
,
act_cfg
=
dict
(
type
=
'GELU'
),
norm_cfg
=
dict
(
type
=
'BN'
),
graph_conv_type
=
'mr'
,
graph_conv_bias
=
True
,
epsilon
=
0.2
,
use_stochastic
=
False
,
drop_path
=
0.1
,
norm_eval
=
False
,
frozen_stages
=
0
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'VigClsHead'
,
num_classes
=
1000
,
in_channels
=
640
,
hidden_dim
=
1024
,
act_cfg
=
dict
(
type
=
'GELU'
),
dropout
=
0.
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
),
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/vig/pyramid_vig_tiny.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'PyramidVig'
,
arch
=
'tiny'
,
k
=
9
,
act_cfg
=
dict
(
type
=
'GELU'
),
norm_cfg
=
dict
(
type
=
'BN'
),
graph_conv_type
=
'mr'
,
graph_conv_bias
=
True
,
epsilon
=
0.2
,
use_stochastic
=
False
,
drop_path
=
0.1
,
norm_eval
=
False
,
frozen_stages
=
0
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'VigClsHead'
,
num_classes
=
1000
,
in_channels
=
384
,
hidden_dim
=
1024
,
act_cfg
=
dict
(
type
=
'GELU'
),
dropout
=
0.
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
),
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/vig/vig_base.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'Vig'
,
arch
=
'base'
,
k
=
9
,
act_cfg
=
dict
(
type
=
'GELU'
),
norm_cfg
=
dict
(
type
=
'BN'
),
graph_conv_type
=
'mr'
,
graph_conv_bias
=
True
,
epsilon
=
0.2
,
use_dilation
=
True
,
use_stochastic
=
False
,
drop_path
=
0.1
,
relative_pos
=
False
,
norm_eval
=
False
,
frozen_stages
=
0
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'VigClsHead'
,
num_classes
=
1000
,
in_channels
=
640
,
hidden_dim
=
1024
,
act_cfg
=
dict
(
type
=
'GELU'
),
dropout
=
0.
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
),
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/vig/vig_small.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'Vig'
,
arch
=
'small'
,
k
=
9
,
act_cfg
=
dict
(
type
=
'GELU'
),
norm_cfg
=
dict
(
type
=
'BN'
),
graph_conv_type
=
'mr'
,
graph_conv_bias
=
True
,
epsilon
=
0.2
,
use_dilation
=
True
,
use_stochastic
=
False
,
drop_path
=
0.1
,
relative_pos
=
False
,
norm_eval
=
False
,
frozen_stages
=
0
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'VigClsHead'
,
num_classes
=
1000
,
in_channels
=
320
,
hidden_dim
=
1024
,
act_cfg
=
dict
(
type
=
'GELU'
),
dropout
=
0.
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
),
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/vig/vig_tiny.py
0 → 100644
View file @
dff2c686
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'Vig'
,
arch
=
'tiny'
,
k
=
9
,
act_cfg
=
dict
(
type
=
'GELU'
),
norm_cfg
=
dict
(
type
=
'BN'
),
graph_conv_type
=
'mr'
,
graph_conv_bias
=
True
,
epsilon
=
0.2
,
use_dilation
=
True
,
use_stochastic
=
False
,
drop_path
=
0.1
,
relative_pos
=
False
,
norm_eval
=
False
,
frozen_stages
=
0
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'VigClsHead'
,
num_classes
=
1000
,
in_channels
=
192
,
hidden_dim
=
1024
,
act_cfg
=
dict
(
type
=
'GELU'
),
dropout
=
0.
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
),
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/vit-base-p16.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'VisionTransformer'
,
arch
=
'b'
,
img_size
=
224
,
patch_size
=
16
,
drop_rate
=
0.1
,
init_cfg
=
[
dict
(
type
=
'Kaiming'
,
layer
=
'Conv2d'
,
mode
=
'fan_in'
,
nonlinearity
=
'linear'
)
]),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'classy_vision'
),
))
configs/_base_/models/vit-base-p32.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'VisionTransformer'
,
arch
=
'b'
,
img_size
=
224
,
patch_size
=
32
,
drop_rate
=
0.1
,
init_cfg
=
[
dict
(
type
=
'Kaiming'
,
layer
=
'Conv2d'
,
mode
=
'fan_in'
,
nonlinearity
=
'linear'
)
]),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/vit-large-p16.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'VisionTransformer'
,
arch
=
'l'
,
img_size
=
224
,
patch_size
=
16
,
drop_rate
=
0.1
,
init_cfg
=
[
dict
(
type
=
'Kaiming'
,
layer
=
'Conv2d'
,
mode
=
'fan_in'
,
nonlinearity
=
'linear'
)
]),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/vit-large-p32.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'VisionTransformer'
,
arch
=
'l'
,
img_size
=
224
,
patch_size
=
32
,
drop_rate
=
0.1
,
init_cfg
=
[
dict
(
type
=
'Kaiming'
,
layer
=
'Conv2d'
,
mode
=
'fan_in'
,
nonlinearity
=
'linear'
)
]),
neck
=
None
,
head
=
dict
(
type
=
'VisionTransformerClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/wide-resnet50.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
3
,
),
stem_channels
=
64
,
base_channels
=
128
,
expansion
=
2
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2048
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/schedules/cifar10_bs128.py
0 → 100644
View file @
dff2c686
# optimizer
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.1
,
momentum
=
0.9
,
weight_decay
=
0.0001
))
# learning policy
param_scheduler
=
dict
(
type
=
'MultiStepLR'
,
by_epoch
=
True
,
milestones
=
[
100
,
150
],
gamma
=
0.1
)
# train, val, test setting
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
200
,
val_interval
=
1
)
val_cfg
=
dict
()
test_cfg
=
dict
()
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr
=
dict
(
base_batch_size
=
128
)
configs/_base_/schedules/cub_bs64.py
0 → 100644
View file @
dff2c686
# optimizer
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0005
,
nesterov
=
True
))
# learning policy
param_scheduler
=
[
# warm up learning rate scheduler
dict
(
type
=
'LinearLR'
,
start_factor
=
0.01
,
by_epoch
=
True
,
begin
=
0
,
end
=
5
,
# update by iter
convert_to_iter_based
=
True
),
# main learning rate scheduler
dict
(
type
=
'CosineAnnealingLR'
,
T_max
=
95
,
by_epoch
=
True
,
begin
=
5
,
end
=
100
,
)
]
# train, val, test setting
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
100
,
val_interval
=
1
)
val_cfg
=
dict
()
test_cfg
=
dict
()
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr
=
dict
(
base_batch_size
=
64
)
configs/_base_/schedules/imagenet_bs1024_adamw_conformer.py
0 → 100644
View file @
dff2c686
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'AdamW'
,
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
lr
=
5e-4
*
128
*
8
/
512
,
weight_decay
=
0.05
,
eps
=
1e-8
,
betas
=
(
0.9
,
0.999
)),
paramwise_cfg
=
dict
(
norm_decay_mult
=
0.0
,
bias_decay_mult
=
0.0
,
custom_keys
=
{
'.cls_token'
:
dict
(
decay_mult
=
0.0
),
}),
)
# learning policy
param_scheduler
=
[
dict
(
type
=
'LinearLR'
,
start_factor
=
1e-3
,
by_epoch
=
True
,
begin
=
0
,
end
=
5
,
convert_to_iter_based
=
True
),
dict
(
type
=
'CosineAnnealingLR'
,
T_max
=
295
,
eta_min
=
1e-5
,
by_epoch
=
True
,
begin
=
5
,
end
=
300
)
]
# train, val, test setting
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
300
,
val_interval
=
1
)
val_cfg
=
dict
()
test_cfg
=
dict
()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr
=
dict
(
base_batch_size
=
1024
)
configs/_base_/schedules/imagenet_bs1024_adamw_hivit.py
0 → 100644
View file @
dff2c686
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
5e-4
*
1024
/
512
,
weight_decay
=
0.05
,
eps
=
1e-8
,
betas
=
(
0.9
,
0.999
)),
paramwise_cfg
=
dict
(
norm_decay_mult
=
0.0
,
bias_decay_mult
=
0.0
,
flat_decay_mult
=
0.0
,
custom_keys
=
{
'.pos_embed'
:
dict
(
decay_mult
=
0.0
),
'.relative_position_bias_table'
:
dict
(
decay_mult
=
0.0
)
}),
)
# learning policy
param_scheduler
=
[
# warm up learning rate scheduler
dict
(
type
=
'LinearLR'
,
start_factor
=
1e-3
,
by_epoch
=
True
,
end
=
20
,
# update by iter
convert_to_iter_based
=
True
),
# main learning rate scheduler
dict
(
type
=
'CosineAnnealingLR'
,
eta_min
=
1e-5
,
by_epoch
=
True
,
begin
=
20
)
]
# train, val, test setting
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
300
,
val_interval
=
1
)
val_cfg
=
dict
()
test_cfg
=
dict
()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr
=
dict
(
base_batch_size
=
1024
)
configs/_base_/schedules/imagenet_bs1024_adamw_revvit.py
0 → 100644
View file @
dff2c686
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
# schedule settings
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
5e-4
*
2048
/
512
,
weight_decay
=
0.05
,
eps
=
1e-8
,
betas
=
(
0.9
,
0.999
)),
paramwise_cfg
=
dict
(
norm_decay_mult
=
0.0
,
bias_decay_mult
=
0.0
,
custom_keys
=
{
'.cls_token'
:
dict
(
decay_mult
=
0.0
),
'.pos_embed'
:
dict
(
decay_mult
=
0.0
)
}),
clip_grad
=
dict
(
max_norm
=
1.0
),
)
# learning policy
param_scheduler
=
[
# warm up learning rate scheduler
dict
(
type
=
'LinearLR'
,
start_factor
=
1e-8
/
2e-3
,
by_epoch
=
True
,
end
=
70
,
# update by iter
convert_to_iter_based
=
True
),
# main learning rate scheduler
dict
(
type
=
'CosineAnnealingLR'
,
eta_min
=
1e-5
,
by_epoch
=
True
,
begin
=
70
)
]
# train, val, test setting
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
300
,
val_interval
=
1
)
val_cfg
=
dict
()
test_cfg
=
dict
()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr
=
dict
(
base_batch_size
=
1024
)
configs/_base_/schedules/imagenet_bs1024_adamw_swin.py
0 → 100644
View file @
dff2c686
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
5e-4
*
1024
/
512
,
weight_decay
=
0.05
,
eps
=
1e-8
,
betas
=
(
0.9
,
0.999
)),
paramwise_cfg
=
dict
(
norm_decay_mult
=
0.0
,
bias_decay_mult
=
0.0
,
flat_decay_mult
=
0.0
,
custom_keys
=
{
'.absolute_pos_embed'
:
dict
(
decay_mult
=
0.0
),
'.relative_position_bias_table'
:
dict
(
decay_mult
=
0.0
)
}),
)
# learning policy
param_scheduler
=
[
# warm up learning rate scheduler
dict
(
type
=
'LinearLR'
,
start_factor
=
1e-3
,
by_epoch
=
True
,
end
=
20
,
# update by iter
convert_to_iter_based
=
True
),
# main learning rate scheduler
dict
(
type
=
'CosineAnnealingLR'
,
eta_min
=
1e-5
,
by_epoch
=
True
,
begin
=
20
)
]
# train, val, test setting
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
300
,
val_interval
=
1
)
val_cfg
=
dict
()
test_cfg
=
dict
()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr
=
dict
(
base_batch_size
=
1024
)
Prev
1
…
11
12
13
14
15
16
17
18
19
…
50
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment