Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
# model settings
embed_dims = 384
num_classes = 1000
model = dict(
type='ImageClassifier',
backbone=dict(
type='T2T_ViT',
img_size=224,
in_channels=3,
embed_dims=embed_dims,
t2t_cfg=dict(
token_dims=64,
use_performer=False,
),
num_layers=14,
layer_cfgs=dict(
num_heads=6,
feedforward_channels=3 * embed_dims, # mlp_ratio = 3
),
drop_path_rate=0.1,
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=num_classes,
in_channels=embed_dims,
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
),
topk=(1, 5),
init_cfg=dict(type='TruncNormal', layer='Linear', std=.02)),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0),
]),
)
# model settings
embed_dims = 448
num_classes = 1000
model = dict(
type='ImageClassifier',
backbone=dict(
type='T2T_ViT',
img_size=224,
in_channels=3,
embed_dims=embed_dims,
t2t_cfg=dict(
token_dims=64,
use_performer=False,
),
num_layers=19,
layer_cfgs=dict(
num_heads=7,
feedforward_channels=3 * embed_dims, # mlp_ratio = 3
),
drop_path_rate=0.1,
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=num_classes,
in_channels=embed_dims,
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
),
topk=(1, 5),
init_cfg=dict(type='TruncNormal', layer='Linear', std=.02)),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0),
]),
)
# model settings
embed_dims = 512
num_classes = 1000
model = dict(
type='ImageClassifier',
backbone=dict(
type='T2T_ViT',
img_size=224,
in_channels=3,
embed_dims=embed_dims,
t2t_cfg=dict(
token_dims=64,
use_performer=False,
),
num_layers=24,
layer_cfgs=dict(
num_heads=8,
feedforward_channels=3 * embed_dims, # mlp_ratio = 3
),
drop_path_rate=0.1,
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=num_classes,
in_channels=embed_dims,
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
),
topk=(1, 5),
init_cfg=dict(type='TruncNormal', layer='Linear', std=.02)),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0),
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='l',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=200,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='TinyViT',
arch='11m',
img_size=(224, 224),
window_size=[7, 7, 14, 7],
out_indices=(3, ),
drop_path_rate=0.1,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=448,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='TinyViT',
arch='21m',
img_size=(224, 224),
window_size=[7, 7, 14, 7],
out_indices=(3, ),
drop_path_rate=0.2,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=576,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='TinyViT',
arch='5m',
img_size=(224, 224),
window_size=[7, 7, 14, 7],
out_indices=(3, ),
drop_path_rate=0.0,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=320,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='TNT',
arch='s',
img_size=224,
patch_size=16,
in_channels=3,
ffn_ratio=4,
qkv_bias=False,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.1,
first_stride=4,
num_fcs=2,
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
]),
neck=None,
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=384,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
topk=(1, 5),
init_cfg=dict(type='TruncNormal', layer='Linear', std=.02)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PCPVT',
arch='base',
in_channels=3,
out_indices=(3, ),
qkv_bias=True,
norm_cfg=dict(type='LN', eps=1e-06),
norm_after_stage=[False, False, False, True],
drop_rate=0.0,
attn_drop_rate=0.,
drop_path_rate=0.3),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SVT',
arch='base',
in_channels=3,
out_indices=(3, ),
qkv_bias=True,
norm_cfg=dict(type='LN'),
norm_after_stage=[False, False, False, True],
drop_rate=0.0,
attn_drop_rate=0.,
drop_path_rate=0.3),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VAN', arch='base', drop_path_rate=0.1),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VAN', arch='large', drop_path_rate=0.2),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VAN', arch='small', drop_path_rate=0.1),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VAN', arch='tiny', drop_path_rate=0.1),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=256,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VGG', depth=11, num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VGG', depth=11, norm_cfg=dict(type='BN'), num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VGG', depth=13, num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VGG', depth=13, norm_cfg=dict(type='BN'), num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VGG', depth=16, num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VGG', depth=16, norm_cfg=dict(type='BN'), num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment