Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SEResNet',
depth=101,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SEResNet',
depth=50,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SEResNeXt',
depth=101,
num_stages=4,
out_indices=(3, ),
groups=32,
width_per_group=4,
se_ratio=16,
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SEResNeXt',
depth=50,
num_stages=4,
out_indices=(3, ),
groups=32,
width_per_group=4,
se_ratio=16,
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='ShuffleNetV1', groups=3),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=960,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='ShuffleNetV2', widen_factor=1.0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformer', arch='base', img_size=224, drop_path_rate=0.5),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
# Only for evaluation
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformer',
arch='base',
img_size=384,
stage_cfgs=dict(block_cfgs=dict(window_size=12))),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
# model settings
# Only for evaluation
model = dict(
type='ImageClassifier',
backbone=dict(type='SwinTransformer', arch='large', img_size=224),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
# model settings
# Only for evaluation
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformer',
arch='large',
img_size=384,
stage_cfgs=dict(block_cfgs=dict(window_size=12))),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformer', arch='small', img_size=224,
drop_path_rate=0.3),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformer', arch='tiny', img_size=224, drop_path_rate=0.2),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformer', arch='base', img_size=224, drop_path_rate=0.5),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=200,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
# Only for evaluation
model = dict(
type='ImageClassifier',
backbone=dict(type='SwinTransformer', arch='large', img_size=224),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=200,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformerV2',
arch='base',
img_size=256,
drop_path_rate=0.5),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformerV2',
arch='base',
img_size=384,
drop_path_rate=0.2),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False))
# model settings
# Only for evaluation
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformerV2',
arch='large',
img_size=256,
drop_path_rate=0.2),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
# model settings
# Only for evaluation
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformerV2',
arch='large',
img_size=384,
drop_path_rate=0.2),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformerV2',
arch='small',
img_size=256,
drop_path_rate=0.3),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformerV2',
arch='tiny',
img_size=256,
drop_path_rate=0.2),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment