Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
MMPretrain-MMCV
Commits
dff2c686
Commit
dff2c686
authored
Sep 03, 2024
by
renzhc
Browse files
first commit
parent
8f9dd0ed
Pipeline
#1665
canceled with stages
Changes
1000
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
374 additions
and
0 deletions
+374
-0
configs/_base_/models/seresnet101.py
configs/_base_/models/seresnet101.py
+17
-0
configs/_base_/models/seresnet50.py
configs/_base_/models/seresnet50.py
+17
-0
configs/_base_/models/seresnext101_32x4d.py
configs/_base_/models/seresnext101_32x4d.py
+20
-0
configs/_base_/models/seresnext50_32x4d.py
configs/_base_/models/seresnext50_32x4d.py
+20
-0
configs/_base_/models/shufflenet_v1_1x.py
configs/_base_/models/shufflenet_v1_1x.py
+12
-0
configs/_base_/models/shufflenet_v2_1x.py
configs/_base_/models/shufflenet_v2_1x.py
+12
-0
configs/_base_/models/swin_transformer/base_224.py
configs/_base_/models/swin_transformer/base_224.py
+23
-0
configs/_base_/models/swin_transformer/base_384.py
configs/_base_/models/swin_transformer/base_384.py
+16
-0
configs/_base_/models/swin_transformer/large_224.py
configs/_base_/models/swin_transformer/large_224.py
+12
-0
configs/_base_/models/swin_transformer/large_384.py
configs/_base_/models/swin_transformer/large_384.py
+16
-0
configs/_base_/models/swin_transformer/small_224.py
configs/_base_/models/swin_transformer/small_224.py
+24
-0
configs/_base_/models/swin_transformer/tiny_224.py
configs/_base_/models/swin_transformer/tiny_224.py
+23
-0
configs/_base_/models/swin_transformer/tiny_base_224.py
configs/_base_/models/swin_transformer/tiny_base_224.py
+23
-0
configs/_base_/models/swin_transformer/tiny_large_224.py
configs/_base_/models/swin_transformer/tiny_large_224.py
+12
-0
configs/_base_/models/swin_transformer_v2/base_256.py
configs/_base_/models/swin_transformer_v2/base_256.py
+26
-0
configs/_base_/models/swin_transformer_v2/base_384.py
configs/_base_/models/swin_transformer_v2/base_384.py
+17
-0
configs/_base_/models/swin_transformer_v2/large_256.py
configs/_base_/models/swin_transformer_v2/large_256.py
+16
-0
configs/_base_/models/swin_transformer_v2/large_384.py
configs/_base_/models/swin_transformer_v2/large_384.py
+16
-0
configs/_base_/models/swin_transformer_v2/small_256.py
configs/_base_/models/swin_transformer_v2/small_256.py
+26
-0
configs/_base_/models/swin_transformer_v2/tiny_256.py
configs/_base_/models/swin_transformer_v2/tiny_256.py
+26
-0
No files found.
Too many changes to show.
To preserve performance only
1000 of 1000+
files are displayed.
Plain diff
Email patch
configs/_base_/models/seresnet101.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SEResNet'
,
depth
=
101
,
num_stages
=
4
,
out_indices
=
(
3
,
),
style
=
'pytorch'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2048
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/seresnet50.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SEResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
3
,
),
style
=
'pytorch'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2048
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/seresnext101_32x4d.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SEResNeXt'
,
depth
=
101
,
num_stages
=
4
,
out_indices
=
(
3
,
),
groups
=
32
,
width_per_group
=
4
,
se_ratio
=
16
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2048
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/seresnext50_32x4d.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SEResNeXt'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
3
,
),
groups
=
32
,
width_per_group
=
4
,
se_ratio
=
16
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2048
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/shufflenet_v1_1x.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ShuffleNetV1'
,
groups
=
3
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
960
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/shufflenet_v2_1x.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ShuffleNetV2'
,
widen_factor
=
1.0
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
configs/_base_/models/swin_transformer/base_224.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformer'
,
arch
=
'base'
,
img_size
=
224
,
drop_path_rate
=
0.5
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/swin_transformer/base_384.py
0 → 100644
View file @
dff2c686
# model settings
# Only for evaluation
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformer'
,
arch
=
'base'
,
img_size
=
384
,
stage_cfgs
=
dict
(
block_cfgs
=
dict
(
window_size
=
12
))),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
)))
configs/_base_/models/swin_transformer/large_224.py
0 → 100644
View file @
dff2c686
# model settings
# Only for evaluation
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformer'
,
arch
=
'large'
,
img_size
=
224
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
)))
configs/_base_/models/swin_transformer/large_384.py
0 → 100644
View file @
dff2c686
# model settings
# Only for evaluation
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformer'
,
arch
=
'large'
,
img_size
=
384
,
stage_cfgs
=
dict
(
block_cfgs
=
dict
(
window_size
=
12
))),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
)))
configs/_base_/models/swin_transformer/small_224.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformer'
,
arch
=
'small'
,
img_size
=
224
,
drop_path_rate
=
0.3
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/swin_transformer/tiny_224.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformer'
,
arch
=
'tiny'
,
img_size
=
224
,
drop_path_rate
=
0.2
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/swin_transformer/tiny_base_224.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformer'
,
arch
=
'base'
,
img_size
=
224
,
drop_path_rate
=
0.5
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
200
,
in_channels
=
1024
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/swin_transformer/tiny_large_224.py
0 → 100644
View file @
dff2c686
# model settings
# Only for evaluation
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformer'
,
arch
=
'large'
,
img_size
=
224
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
200
,
in_channels
=
1536
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
)))
configs/_base_/models/swin_transformer_v2/base_256.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformerV2'
,
arch
=
'base'
,
img_size
=
256
,
drop_path_rate
=
0.5
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/swin_transformer_v2/base_384.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformerV2'
,
arch
=
'base'
,
img_size
=
384
,
drop_path_rate
=
0.2
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
))
configs/_base_/models/swin_transformer_v2/large_256.py
0 → 100644
View file @
dff2c686
# model settings
# Only for evaluation
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformerV2'
,
arch
=
'large'
,
img_size
=
256
,
drop_path_rate
=
0.2
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
)))
configs/_base_/models/swin_transformer_v2/large_384.py
0 → 100644
View file @
dff2c686
# model settings
# Only for evaluation
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformerV2'
,
arch
=
'large'
,
img_size
=
384
,
drop_path_rate
=
0.2
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
)))
configs/_base_/models/swin_transformer_v2/small_256.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformerV2'
,
arch
=
'small'
,
img_size
=
256
,
drop_path_rate
=
0.3
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
configs/_base_/models/swin_transformer_v2/tiny_256.py
0 → 100644
View file @
dff2c686
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'SwinTransformerV2'
,
arch
=
'tiny'
,
img_size
=
256
,
drop_path_rate
=
0.2
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'Mixup'
,
alpha
=
0.8
),
dict
(
type
=
'CutMix'
,
alpha
=
1.0
)
]),
)
Prev
1
…
9
10
11
12
13
14
15
16
17
…
50
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment