Commit dff2c686 authored by renzhc's avatar renzhc
Browse files

first commit

parent 8f9dd0ed
Pipeline #1665 canceled with stages
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileViT', arch='xx_small'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=320,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
model = dict(
type='ImageClassifier',
backbone=dict(type='MViT', arch='base', drop_path_rate=0.3),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
in_channels=768,
num_classes=1000,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='MViT',
arch='large',
drop_path_rate=0.5,
dim_mul_in_attention=False),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
in_channels=1152,
num_classes=1000,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(type='MViT', arch='small', drop_path_rate=0.1),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
in_channels=768,
num_classes=1000,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
model = dict(
type='ImageClassifier',
backbone=dict(type='MViT', arch='tiny', drop_path_rate=0.1),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
in_channels=768,
num_classes=1000,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='m36',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='m48',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='s12',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='s24',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='s36',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='RegNet', arch='regnetx_1.6gf'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=912,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='RegNet', arch='regnetx_12gf'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2240,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='RegNet', arch='regnetx_3.2gf'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1008,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='RegNet', arch='regnetx_4.0gf'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1360,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='RegNet', arch='regnetx_400mf'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=384,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='RegNet', arch='regnetx_6.4gf'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1624,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='RegNet', arch='regnetx_8.0gf'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1920,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='RegNet', arch='regnetx_800mf'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=672,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
from mmpretrain.models import build_classifier
model = dict(
type='ImageClassifier',
backbone=dict(
type='RepLKNet',
arch='31B',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
if __name__ == '__main__':
# model.pop('type')
model = build_classifier(model)
model.eval()
print('------------------- training-time model -------------')
for i in model.state_dict().keys():
print(i)
model = dict(
type='ImageClassifier',
backbone=dict(
type='RepLKNet',
arch='31L',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment