Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
MMPretrain-MMCV
Commits
78daaf2c
Commit
78daaf2c
authored
Sep 04, 2024
by
renzhc
Browse files
update readme
parent
0d5d0b15
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
109 additions
and
5 deletions
+109
-5
README.md
README.md
+109
-5
No files found.
README.md
View file @
78daaf2c
...
...
@@ -63,17 +63,121 @@ pip install -r requirements.txt
## 数据集
##
示例
##
# ImageNet
本仓库中提供了几个在tiny-imagenet下进行测试的脚本,用8卡从零开始训练resnet50的运行方式如下,
在本项目中可以使用ImageNet数据集。下载ImageNet数据集:https://image-net.org/
可于SCNet快速下载
[
imagenet-2012
](
http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012
)
下载其中的ILSVRC2012_img_train.tar和ILSVRC2012_img_val.tar并按照以下方式解包
```
bash
cd
mmpretrain-mmcv/data/imagenet
mkdir
train
&&
cd
train
tar
-xvf
ILSVRC2012_img_train.tar
```
解包后是1000个tar文件,每个tar对应了一个类别,解包至对应文件夹
```
bash
for
tarfile
in
*
.tar
;
do
dirname
=
"
${
tarfile
%.tar
}
"
mkdir
"
$dirname
"
tar
-xvf
"
$tarfile
"
-C
"
$dirname
"
done
```
目录结构如下
```
shell
bash tools/dist_train.sh resnet50-test.py 8
```
data
└── imagenet
├── train
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
├──val
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
```
### tiny-imagenet-200
由于ImageNet完整数据集较大,可以使用
[
tiny-imagenet-200
](
http://cs231n.stanford.edu/tiny-imagenet-200.zip
)
进行测试,此时需要对配置脚本进行一些修改:
-
dataset配置文件(configs/
\_\_
base
\_\_
/datasets/xxx.py)中,需要对以下字段进行修改
```
python
# dataset settings
dataset_type
=
'CustomDataset'
# 修改为CustomDataset
data_preprocessor
=
dict
(
num_classes
=
200
,
# 修改类别为200
...
)
...
train_dataloader
=
dict
(
batch_size
=
32
,
num_workers
=
5
,
dataset
=
dict
(
type
=
dataset_type
,
data_root
=
'data/imagenet'
,
data_prefix
=
'train'
,
# 改为data_prefix='train',val_dataloader中同理
pipeline
=
train_pipeline
),
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
True
),
)
```
-
model配置文件(configs/
\_\_
base
\_\_
/models/xxx.py)中,同样需要将类别相关的值设置为200。
```
python
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
...
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
200
,
# 将类别数改为200
...
))
```
更多的配置在configs目录下,均可通过以下方式运行
mmpretrain-mmcv中提供了使用tiny-imagenet-200进行训练的若干配置脚本,可参考进行设置。
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于tiny-imagenet,目录结构如下:
```
data
└── imagenet
├── test/
├── train/
├── val/
├── wnids.txt
└── words.txt
```
## 启动训练
```
shell
bash tools/dist_train.sh <配置文件脚本> <训练用卡数>
```
如遇端口占用问题,可在tools/dist_train.sh修改端口
更多的配置文件在configs目录下,可根据需要进行修改,继承的基础配置在configs/
\_
base
\_
/下,具体地
-
configs/
\_
base
\_
/datasets/xxx.py 数据集相关配置
-
configs/
\_
base
\_
/models/xxx.py 模型相关配置
-
configs/
\_
base
\_
/shedules/xxx.py 训练过程相关配置
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment