import numpy as np from mmdet3d.datasets.pipelines.indoor_sample import PointSample def test_indoor_sample(): np.random.seed(0) scannet_sample_points = PointSample(5) scannet_results = dict() scannet_points = np.array([[1.0719866, -0.7870435, 0.8408122, 0.9196809], [1.103661, 0.81065744, 2.6616862, 2.7405548], [1.0276475, 1.5061463, 2.6174362, 2.6963048], [-0.9709588, 0.6750515, 0.93901765, 1.0178864], [1.0578915, 1.1693821, 0.87503505, 0.95390373], [0.05560996, -1.5688863, 1.2440368, 1.3229055], [-0.15731563, -1.7735453, 2.7535574, 2.832426], [1.1188195, -0.99211365, 2.5551798, 2.6340485], [-0.9186557, -1.7041215, 2.0562649, 2.1351335], [-1.0128691, -1.3394243, 0.040936, 0.1198047]]) scannet_results['points'] = scannet_points scannet_pts_instance_mask = np.array( [15, 12, 11, 38, 0, 18, 17, 12, 17, 0]) scannet_results['pts_instance_mask'] = scannet_pts_instance_mask scannet_pts_semantic_mask = np.array([38, 1, 1, 40, 0, 40, 1, 1, 1, 0]) scannet_results['pts_semantic_mask'] = scannet_pts_semantic_mask scannet_results = scannet_sample_points(scannet_results) scannet_points_result = scannet_results.get('points', None) scannet_instance_labels_result = scannet_results.get( 'pts_instance_mask', None) scannet_semantic_labels_result = scannet_results.get( 'pts_semantic_mask', None) scannet_choices = np.array([2, 8, 4, 9, 1]) assert np.allclose(scannet_points[scannet_choices], scannet_points_result) assert np.all(scannet_pts_instance_mask[scannet_choices] == scannet_instance_labels_result) assert np.all(scannet_pts_semantic_mask[scannet_choices] == scannet_semantic_labels_result) np.random.seed(0) sunrgbd_sample_points = PointSample(5) sunrgbd_results = dict() sunrgbd_point_cloud = np.array( [[-1.8135729e-01, 1.4695230e+00, -1.2780589e+00, 7.8938007e-03], [1.2581362e-03, 2.0561588e+00, -1.0341064e+00, 2.5184631e-01], [6.8236995e-01, 3.3611867e+00, -9.2599887e-01, 3.5995382e-01], [-2.9432583e-01, 1.8714852e+00, -9.0929651e-01, 3.7665617e-01], [-0.5024875, 1.8032674, -1.1403012, 0.14565146], [-0.520559, 1.6324949, -0.9896099, 0.2963428], [0.95929825, 2.9402404, -0.8746674, 0.41128528], [-0.74624217, 1.5244724, -0.8678476, 0.41810507], [0.56485355, 1.5747732, -0.804522, 0.4814307], [-0.0913099, 1.3673826, -1.2800645, 0.00588822]]) sunrgbd_results['points'] = sunrgbd_point_cloud sunrgbd_results = sunrgbd_sample_points(sunrgbd_results) sunrgbd_choices = np.array([2, 8, 4, 9, 1]) sunrgbd_points_result = sunrgbd_results.get('points', None) assert np.allclose(sunrgbd_point_cloud[sunrgbd_choices], sunrgbd_points_result)