_base_ = [ '../_base_/datasets/kitti-3d-car.py', '../_base_/models/point_rcnn.py', '../_base_/default_runtime.py', '../_base_/schedules/cyclic-40e.py' ] # dataset settings dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Car', 'Pedestrian', 'Cyclist'] point_cloud_range = [0, -40, -3, 70.4, 40, 1] input_modality = dict(use_lidar=True, use_camera=False) db_sampler = dict( data_root=data_root, info_path=data_root + 'kitti_dbinfos_train.pkl', rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), sample_groups=dict(Car=20, Pedestrian=15, Cyclist=15), classes=class_names, points_loader=dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4)) train_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectSample', db_sampler=db_sampler), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='ObjectNoise', num_try=100, translation_std=[1.0, 1.0, 0.5], global_rot_range=[0.0, 0.0], rot_range=[-0.78539816, 0.78539816]), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointSample', num_points=16384, sample_range=40.0), dict(type='PointShuffle'), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointSample', num_points=16384, sample_range=40.0), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='RepeatDataset', times=2, dataset=dict(pipeline=train_pipeline, classes=class_names)), val=dict(pipeline=test_pipeline, classes=class_names), test=dict(pipeline=test_pipeline, classes=class_names)) # optimizer lr = 0.001 # max learning rate optimizer = dict(lr=lr, betas=(0.95, 0.85)) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=80) evaluation = dict(interval=2) # yapf:disable log_config = dict( interval=30, hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook') ]) # yapf:enable