import mmcv import numpy as np from torch.utils.data import Dataset from mmdet.datasets import DATASETS from .pipelines import Compose @DATASETS.register_module() class Custom3DDataset(Dataset): def __init__(self, data_root, ann_file, pipeline=None, classes=None, modality=None, test_mode=False): super().__init__() self.data_root = data_root self.ann_file = ann_file self.test_mode = test_mode self.modality = modality self.CLASSES = self.get_classes(classes) self.data_infos = self.load_annotations(self.ann_file) if pipeline is not None: self.pipeline = Compose(pipeline) # set group flag for the sampler if not self.test_mode: self._set_group_flag() def load_annotations(self, ann_file): return mmcv.load(ann_file) def get_data_info(self, index): info = self.data_infos[index] sample_idx = info['point_cloud']['lidar_idx'] pts_filename = self._get_pts_filename(sample_idx) input_dict = dict(pts_filename=pts_filename) if not self.test_mode: annos = self.get_ann_info(index) input_dict['ann_info'] = annos if len(annos['gt_bboxes_3d']) == 0: return None return input_dict def pre_pipeline(self, results): results['bbox3d_fields'] = [] results['pts_mask_fields'] = [] results['pts_seg_fields'] = [] def prepare_train_data(self, index): input_dict = self.get_data_info(index) if input_dict is None: return None self.pre_pipeline(input_dict) example = self.pipeline(input_dict) if example is None or len(example['gt_bboxes_3d']._data) == 0: return None return example def prepare_test_data(self, index): input_dict = self.get_data_info(index) self.pre_pipeline(input_dict) example = self.pipeline(input_dict) return example @classmethod def get_classes(cls, classes=None): """Get class names of current dataset. Args: classes (Sequence[str] | str | None): If classes is None, use default CLASSES defined by builtin dataset. If classes is a string, take it as a file name. The file contains the name of classes where each line contains one class name. If classes is a tuple or list, override the CLASSES defined by the dataset. Return: list[str]: return the list of class names """ if classes is None: return cls.CLASSES if isinstance(classes, str): # take it as a file path class_names = mmcv.list_from_file(classes) elif isinstance(classes, (tuple, list)): class_names = classes else: raise ValueError(f'Unsupported type {type(classes)} of classes.') return class_names def _generate_annotations(self, output): """Generate annotations. Transform results of the model to the form of the evaluation. Args: output (list): The output of the model. """ result = [] bs = len(output) for i in range(bs): pred_list_i = list() pred_boxes = output[i] box3d_depth = pred_boxes['box3d_lidar'] if box3d_depth is not None: label_preds = pred_boxes['label_preds'] scores = pred_boxes['scores'] label_preds = label_preds.detach().cpu().numpy() for j in range(box3d_depth.shape[0]): bbox_lidar = box3d_depth[j] # [7] in lidar bbox_lidar_bottom = bbox_lidar.copy() pred_list_i.append( (label_preds[j], bbox_lidar_bottom, scores[j])) result.append(pred_list_i) else: result.append(pred_list_i) return result def format_results(self, outputs): results = [] for output in outputs: result = self._generate_annotations(output) results.append(result) return results def evaluate(self, results, metric=None): """Evaluate. Evaluation in indoor protocol. Args: results (list): List of result. metric (list[float]): AP IoU thresholds. """ results = self.format_results(results) from mmdet3d.core.evaluation import indoor_eval assert len(metric) > 0 gt_annos = [info['annos'] for info in self.data_infos] label2cat = {i: cat_id for i, cat_id in enumerate(self.CLASSES)} ret_dict = indoor_eval(gt_annos, results, metric, label2cat) return ret_dict def __len__(self): return len(self.data_infos) def _rand_another(self, idx): pool = np.where(self.flag == self.flag[idx])[0] return np.random.choice(pool) def __getitem__(self, idx): if self.test_mode: return self.prepare_test_data(idx) while True: data = self.prepare_train_data(idx) if data is None: idx = self._rand_another(idx) continue return data def _set_group_flag(self): """Set flag according to image aspect ratio. Images with aspect ratio greater than 1 will be set as group 1, otherwise group 0. In 3D datasets, they are all the same, thus are all zeros """ self.flag = np.zeros(len(self), dtype=np.uint8)