model = dict( type='MinkUNet', data_preprocessor=dict( type='Det3DDataPreprocessor', voxel=True, voxel_type='minkunet', voxel_layer=dict( max_num_points=-1, point_cloud_range=[-100, -100, -20, 100, 100, 20], voxel_size=[0.05, 0.05, 0.05], max_voxels=(-1, -1)), max_voxels=80000), backbone=dict( type='SPVCNNBackbone', in_channels=4, base_channels=32, num_stages=4, encoder_channels=[32, 64, 128, 256], decoder_channels=[256, 128, 96, 96], drop_ratio=0.3), decode_head=dict( type='MinkUNetHead', channels=96, num_classes=19, dropout_ratio=0, loss_decode=dict(type='mmdet.CrossEntropyLoss', avg_non_ignore=True), ignore_index=19), train_cfg=dict(), test_cfg=dict())