# dataset settings dataset_type = 'S3DISSegDataset' data_root = './data/s3dis/' class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') num_points = 4096 train_area = [1, 2, 3, 4, 6] test_area = 5 train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_mask_3d=False, with_seg_3d=True), dict( type='PointSegClassMapping', valid_cat_ids=tuple(range(len(class_names)))), dict( type='IndoorPatchPointSample', num_points=num_points, block_size=1.0, sample_rate=1.0, ignore_index=len(class_names), use_normalized_coord=True), dict(type='NormalizePointsColor', color_mean=None), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict(type='NormalizePointsColor', color_mean=None), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='Collect3D', keys=['points']) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) # we need to load gt seg_mask! eval_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_mask_3d=False, with_seg_3d=True), dict( type='PointSegClassMapping', valid_cat_ids=tuple(range(len(class_names)))), dict( type='DefaultFormatBundle3D', with_label=False, class_names=class_names), dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, # train on area 1, 2, 3, 4, 6 # test on area 5 train=dict( type=dataset_type, data_root=data_root, ann_files=[ data_root + f's3dis_infos_Area_{i}.pkl' for i in train_area ], pipeline=train_pipeline, classes=class_names, test_mode=False, ignore_index=len(class_names), scene_idxs=[ data_root + f'seg_info/Area_{i}_resampled_scene_idxs.npy' for i in train_area ], label_weight=[ data_root + f'seg_info/Area_{i}_label_weight.npy' for i in train_area ]), val=dict( type=dataset_type, data_root=data_root, ann_file=data_root + f's3dis_infos_Area_{test_area}.pkl', pipeline=test_pipeline, classes=class_names, test_mode=True, ignore_index=len(class_names)), test=dict( type=dataset_type, data_root=data_root, ann_file=data_root + f's3dis_infos_Area_{test_area}.pkl', pipeline=test_pipeline, classes=class_names, test_mode=True, ignore_index=len(class_names))) evaluation = dict(pipeline=eval_pipeline)