# Copyright (c) OpenMMLab. All rights reserved. r"""Modified from Cylinder3D. Please refer to `Cylinder3D github page `_ for details """ from typing import List import numpy as np import torch from mmcv.ops import SparseConvTensor from mmengine.model import BaseModule from mmdet3d.models.layers.sparse_block import (AsymmeDownBlock, AsymmeUpBlock, AsymmResBlock, DDCMBlock) from mmdet3d.registry import MODELS from mmdet3d.utils import ConfigType @MODELS.register_module() class Asymm3DSpconv(BaseModule): """Asymmetrical 3D convolution networks. Args: grid_size (int): Size of voxel grids. input_channels (int): Input channels of the block. base_channels (int): Initial size of feature channels before feeding into Encoder-Decoder structure. Defaults to 16. backbone_depth (int): The depth of backbone. The backbone contains downblocks and upblocks with the number of backbone_depth. height_pooing (List[bool]): List indicating which downblocks perform height pooling. norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization layer. Defaults to dict(type='BN1d', eps=1e-3, momentum=0.01)). init_cfg (dict, optional): Initialization config. Defaults to None. """ def __init__(self, grid_size: int, input_channels: int, base_channels: int = 16, backbone_depth: int = 4, height_pooing: List[bool] = [True, True, False, False], norm_cfg: ConfigType = dict( type='BN1d', eps=1e-3, momentum=0.01), init_cfg=None): super().__init__(init_cfg=init_cfg) self.grid_size = grid_size self.backbone_depth = backbone_depth self.down_context = AsymmResBlock( input_channels, base_channels, indice_key='pre', norm_cfg=norm_cfg) self.down_block_list = torch.nn.ModuleList() self.up_block_list = torch.nn.ModuleList() for i in range(self.backbone_depth): self.down_block_list.append( AsymmeDownBlock( 2**i * base_channels, 2**(i + 1) * base_channels, height_pooling=height_pooing[i], indice_key='down' + str(i), norm_cfg=norm_cfg)) if i == self.backbone_depth - 1: self.up_block_list.append( AsymmeUpBlock( 2**(i + 1) * base_channels, 2**(i + 1) * base_channels, up_key='down' + str(i), indice_key='up' + str(self.backbone_depth - 1 - i), norm_cfg=norm_cfg)) else: self.up_block_list.append( AsymmeUpBlock( 2**(i + 2) * base_channels, 2**(i + 1) * base_channels, up_key='down' + str(i), indice_key='up' + str(self.backbone_depth - 1 - i), norm_cfg=norm_cfg)) self.ddcm = DDCMBlock( 2 * base_channels, 2 * base_channels, indice_key='ddcm', norm_cfg=norm_cfg) def forward(self, voxel_features: torch.Tensor, coors: torch.Tensor, batch_size: int) -> SparseConvTensor: """Forward pass.""" coors = coors.int() ret = SparseConvTensor(voxel_features, coors, np.array(self.grid_size), batch_size) ret = self.down_context(ret) down_skip_list = [] down_pool = ret for i in range(self.backbone_depth): down_pool, down_skip = self.down_block_list[i](down_pool) down_skip_list.append(down_skip) up = down_pool for i in range(self.backbone_depth - 1, -1, -1): up = self.up_block_list[i](up, down_skip_list[i]) ddcm = self.ddcm(up) ddcm.features = torch.cat((ddcm.features, up.features), 1) return ddcm