{ "cells": [ { "cell_type": "code", "execution_count": 25, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from mmdet3d.apis import LidarDet3DInferencer" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# initialize inferencer\n", "inferencer = LidarDet3DInferencer('pointpillars_kitti-3class')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "# inference\n", "inputs = dict(points='./data/kitti/000008.bin')\n", "inferencer(inputs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# inference and visualize\n", "# NOTE: use the `Esc` key to exit Open3D window in Jupyter Notebook Environment\n", "inferencer(inputs, show=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# If your operating environment does not have a display device,\n", "# (e.g. a remote server), you can save the predictions and visualize\n", "# them in local devices.\n", "inferencer(inputs, show=False, out_dir='./remote_outputs')\n", "\n", "# Simulate the migration process\n", "%mv ./remote_outputs ./local_outputs\n", "\n", "# Visualize the predictions from the saved files\n", "# NOTE: use the `Esc` key to exit Open3D window in Jupyter Notebook Environment\n", "local_inferencer = LidarDet3DInferencer('pointpillars_kitti-3class')\n", "inputs = local_inferencer._inputs_to_list(inputs)\n", "local_inferencer.visualize_preds_fromfile(inputs, ['local_outputs/preds/000008.json'], show=True)" ] } ], "metadata": { "interpreter": { "hash": "a0c343fece975dd89087e8c2194dd4d3db28d7000f1b32ed9ed9d584dd54dbbe" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 4 }