import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, setup_seed) class TestImVoxelNet(unittest.TestCase): def test_imvoxelnet(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'ImVoxelNet') DefaultScope.get_instance('test_ImVoxelNet', scope_name='mmdet3d') setup_seed(0) imvoxel_net_cfg = get_detector_cfg( 'imvoxelnet/imvoxelnet_8xb4_kitti-3d-car.py') model = MODELS.build(imvoxel_net_cfg) num_gt_instance = 1 packed_inputs = create_detector_inputs( with_points=False, with_img=True, img_size=(128, 128), num_gt_instance=num_gt_instance, with_pts_semantic_mask=False, with_pts_instance_mask=False) if torch.cuda.is_available(): model = model.cuda() # test simple_test with torch.no_grad(): data = model.data_preprocessor(packed_inputs, True) torch.cuda.empty_cache() results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) # save the memory with torch.no_grad(): losses = model.forward(**data, mode='loss') self.assertGreaterEqual(losses['loss_cls'][0], 0) self.assertGreaterEqual(losses['loss_bbox'][0], 0) self.assertGreaterEqual(losses['loss_dir'][0], 0)