import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, setup_seed) class TestFCAF3d(unittest.TestCase): def test_fcaf3d(self): try: import MinkowskiEngine # noqa: F401 except ImportError: return import mmdet3d.models assert hasattr(mmdet3d.models, 'MinkSingleStage3DDetector') DefaultScope.get_instance('test_fcaf3d', scope_name='mmdet3d') setup_seed(0) fcaf3d_net_cfg = get_detector_cfg( 'fcaf3d/fcaf3d_2xb8_scannet-3d-18class.py') model = MODELS.build(fcaf3d_net_cfg) num_gt_instance = 3 packed_inputs = create_detector_inputs( num_gt_instance=num_gt_instance, num_classes=1, points_feat_dim=6, gt_bboxes_dim=6) if torch.cuda.is_available(): model = model.cuda() with torch.no_grad(): data = model.data_preprocessor(packed_inputs, False) torch.cuda.empty_cache() results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) losses = model.forward(**data, mode='loss') self.assertGreater(losses['center_loss'], 0) self.assertGreater(losses['bbox_loss'], 0) self.assertGreater(losses['cls_loss'], 0)