_base_ = [ '../_base_/datasets/nus-mono3d.py', '../_base_/models/pgd.py', '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, False, True, True)), bbox_head=dict( pred_bbox2d=True, group_reg_dims=(2, 1, 3, 1, 2, 4), # offset, depth, size, rot, velo, bbox2d reg_branch=( (256, ), # offset (256, ), # depth (256, ), # size (256, ), # rot (), # velo (256, ) # bbox2d ), loss_depth=dict( type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), bbox_coder=dict( type='PGDBBoxCoder', base_depths=((31.99, 21.12), (37.15, 24.63), (39.69, 23.97), (40.91, 26.34), (34.16, 20.11), (22.35, 13.70), (24.28, 16.05), (27.26, 15.50), (20.61, 13.68), (22.74, 15.01)), base_dims=((4.62, 1.73, 1.96), (6.93, 2.83, 2.51), (12.56, 3.89, 2.94), (11.22, 3.50, 2.95), (6.68, 3.21, 2.85), (6.68, 3.21, 2.85), (2.11, 1.46, 0.78), (0.73, 1.77, 0.67), (0.41, 1.08, 0.41), (0.50, 0.99, 2.52)), code_size=9)), # set weight 1.0 for base 7 dims (offset, depth, size, rot) # 0.05 for 2-dim velocity and 0.2 for 4-dim 2D distance targets train_cfg=dict(code_weight=[ 1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05, 0.2, 0.2, 0.2, 0.2 ]), test_cfg=dict(nms_pre=1000, nms_thr=0.8, score_thr=0.01, max_per_img=200)) class_names = [ 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' ] train_pipeline = [ dict(type='LoadImageFromFileMono3D'), dict( type='LoadAnnotations3D', with_bbox=True, with_label=True, with_attr_label=True, with_bbox_3d=True, with_label_3d=True, with_bbox_depth=True), dict(type='Resize', img_scale=(1600, 900), keep_ratio=True), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='Pack3DDetInputs', keys=[ 'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels', 'gt_bboxes_3d', 'gt_labels_3d', 'centers2d', 'depths' ]), ] test_pipeline = [ dict(type='LoadImageFromFileMono3D'), dict( type='MultiScaleFlipAug', scale_factor=1.0, flip=False, transforms=[ dict(type='RandomFlip3D'), ]), dict(type='Pack3DDetInputs', keys=['img']), ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( lr=0.004, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) total_epochs = 12 evaluation = dict(interval=4) runner = dict(max_epochs=total_epochs)