# For S3DIS seg we usually do 13-class segmentation class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') metainfo = dict(classes=class_names) dataset_type = 'S3DISSegDataset' data_root = 'data/s3dis/' input_modality = dict(use_lidar=True, use_camera=False) data_prefix = dict( pts='points', pts_instance_mask='instance_mask', pts_semantic_mask='semantic_mask') file_client_args = dict(backend='disk') # Uncomment the following if use ceph or other file clients. # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # for more details. # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/s3dis/': # 's3://s3dis/', # })) num_points = 4096 train_area = [1, 2, 3, 4, 6] test_area = 5 train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_mask_3d=False, with_seg_3d=True), dict(type='PointSegClassMapping'), dict( type='IndoorPatchPointSample', num_points=num_points, block_size=1.0, ignore_index=len(class_names), use_normalized_coord=True, enlarge_size=0.2, min_unique_num=None), dict(type='NormalizePointsColor', color_mean=None), dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_mask_3d=False, with_seg_3d=True), dict(type='NormalizePointsColor', color_mean=None), dict( # a wrapper in order to successfully call test function # actually we don't perform test-time-aug type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.0, flip_ratio_bev_vertical=0.0), ]), dict(type='Pack3DDetInputs', keys=['points']) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) # we need to load gt seg_mask! eval_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict(type='NormalizePointsColor', color_mean=None), dict(type='Pack3DDetInputs', keys=['points']) ] # train on area 1, 2, 3, 4, 6 # test on area 5 train_dataloader = dict( batch_size=8, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, ann_files=[f's3dis_infos_Area_{i}.pkl' for i in train_area], metainfo=metainfo, data_prefix=data_prefix, pipeline=train_pipeline, modality=input_modality, ignore_index=len(class_names), scene_idxs=[ f'seg_info/Area_{i}_resampled_scene_idxs.npy' for i in train_area ], test_mode=False)) test_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_files=f's3dis_infos_Area_{test_area}.pkl', metainfo=metainfo, data_prefix=data_prefix, pipeline=test_pipeline, modality=input_modality, ignore_index=len(class_names), scene_idxs=f'seg_info/Area_{test_area}_resampled_scene_idxs.npy', test_mode=True)) val_dataloader = test_dataloader val_evaluator = dict(type='SegMetric') test_evaluator = val_evaluator vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')