dataset_type = 'CocoDataset' data_root = 'data/nuimages/' class_names = [ 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' ] file_client_args = dict(backend='disk') # Uncomment the following if use ceph or other file clients. # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # for more details. # file_client_args = dict( # backend='petrel', path_mapping=dict(data='s3://nuimages')) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(1280, 720), (1920, 1080)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PackDetInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1600, 900), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), ]), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')), ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/nuimages_v1.0-train.json', img_prefix=data_root, classes=class_names, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/nuimages_v1.0-val.json', img_prefix=data_root, classes=class_names, pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/nuimages_v1.0-val.json', img_prefix=data_root, classes=class_names, pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])