import os import mmcv from tools.data_converter.sunrgbd_data_utils import SUNRGBDData def create_sunrgbd_info_file(data_path, pkl_prefix='sunrgbd', save_path=None, use_v1=False): ''' Create sunrgbd information file. Get information of the raw data and save it to the pkl file. Args: data_path (str): Path of the data. pkl_prefix (str): Prefix ofr the pkl to be saved. Default: 'sunrgbd'. save_path (str): Path of the pkl to be saved. Default: None. use_v1 (bool): Whether to use v1. Default: False. Returns: None ''' assert os.path.exists(data_path) if save_path is None: save_path = data_path else: save_path = save_path assert os.path.exists(save_path) train_filename = os.path.join(save_path, f'{pkl_prefix}_infos_train.pkl') val_filename = os.path.join(save_path, f'{pkl_prefix}_infos_val.pkl') train_dataset = SUNRGBDData( root_path=data_path, split='train', use_v1=use_v1) val_dataset = SUNRGBDData(root_path=data_path, split='val', use_v1=use_v1) sunrgbd_infos_train = train_dataset.get_sunrgbd_infos(has_label=True) with open(train_filename, 'wb') as f: mmcv.dump(sunrgbd_infos_train, f, 'pkl') print(f'Sunrgbd info train file is saved to {train_filename}') sunrgbd_infos_val = val_dataset.get_sunrgbd_infos(has_label=True) with open(val_filename, 'wb') as f: mmcv.dump(sunrgbd_infos_val, f, 'pkl') print(f'Sunrgbd info val file is saved to {val_filename}')