from torch import nn from mmdet.models.registry import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS, ROI_EXTRACTORS, SHARED_HEADS) from ..utils import build_from_cfg from .registry import FUSION_LAYERS, MIDDLE_ENCODERS, VOXEL_ENCODERS def build(cfg, registry, default_args=None): if isinstance(cfg, list): modules = [ build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg ] return nn.Sequential(*modules) else: return build_from_cfg(cfg, registry, default_args) def build_backbone(cfg): return build(cfg, BACKBONES) def build_neck(cfg): return build(cfg, NECKS) def build_roi_extractor(cfg): return build(cfg, ROI_EXTRACTORS) def build_shared_head(cfg): return build(cfg, SHARED_HEADS) def build_head(cfg): return build(cfg, HEADS) def build_loss(cfg): return build(cfg, LOSSES) def build_detector(cfg, train_cfg=None, test_cfg=None): return build(cfg, DETECTORS, dict(train_cfg=train_cfg, test_cfg=test_cfg)) def build_voxel_encoder(cfg): return build(cfg, VOXEL_ENCODERS) def build_middle_encoder(cfg): return build(cfg, MIDDLE_ENCODERS) def build_fusion_layer(cfg): return build(cfg, FUSION_LAYERS)