import os.path as osp import mmcv import numpy as np import pycocotools.mask as maskUtils from mmdet.datasets.pipelines import PIPELINES @PIPELINES.register_module class LoadImageFromFile(object): def __init__(self, to_float32=False): self.to_float32 = to_float32 def __call__(self, results): if results['img_prefix'] is not None: filename = osp.join(results['img_prefix'], results['img_info']['filename']) else: filename = results['img_info']['filename'] img = mmcv.imread(filename) if self.to_float32: img = img.astype(np.float32) results['filename'] = filename results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape return results def __repr__(self): return self.__class__.__name__ + '(to_float32={})'.format( self.to_float32) @PIPELINES.register_module class LoadAnnotations(object): def __init__(self, with_bbox=True, with_label=True, with_mask=False, with_seg=False, poly2mask=True): self.with_bbox = with_bbox self.with_label = with_label self.with_mask = with_mask self.with_seg = with_seg self.poly2mask = poly2mask def _load_bboxes(self, results): ann_info = results['ann_info'] results['gt_bboxes'] = ann_info['bboxes'] gt_bboxes_ignore = ann_info.get('bboxes_ignore', None) if gt_bboxes_ignore is not None: results['gt_bboxes_ignore'] = gt_bboxes_ignore results['bbox_fields'].append('gt_bboxes_ignore') results['bbox_fields'].append('gt_bboxes') return results def _load_labels(self, results): results['gt_labels'] = results['ann_info']['labels'] return results def _poly2mask(self, mask_ann, img_h, img_w): if isinstance(mask_ann, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(mask_ann, img_h, img_w) rle = maskUtils.merge(rles) elif isinstance(mask_ann['counts'], list): # uncompressed RLE rle = maskUtils.frPyObjects(mask_ann, img_h, img_w) else: # rle rle = mask_ann mask = maskUtils.decode(rle) return mask def _load_masks(self, results): h, w = results['img_info']['height'], results['img_info']['width'] gt_masks = results['ann_info']['masks'] if self.poly2mask: gt_masks = [self._poly2mask(mask, h, w) for mask in gt_masks] results['gt_masks'] = gt_masks results['mask_fields'].append('gt_masks') return results def _load_semantic_seg(self, results): results['gt_semantic_seg'] = mmcv.imread( osp.join(results['seg_prefix'], results['ann_info']['seg_map']), flag='unchanged').squeeze() results['seg_fields'].append('gt_semantic_seg') return results def __call__(self, results): if self.with_bbox: results = self._load_bboxes(results) if results is None: return None if self.with_label: results = self._load_labels(results) if self.with_mask: results = self._load_masks(results) if self.with_seg: results = self._load_semantic_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += ('(with_bbox={}, with_label={}, with_mask={},' ' with_seg={})').format(self.with_bbox, self.with_label, self.with_mask, self.with_seg) return repr_str @PIPELINES.register_module class LoadProposals(object): def __init__(self, num_max_proposals=None): self.num_max_proposals = num_max_proposals def __call__(self, results): proposals = results['proposals'] if proposals.shape[1] not in (4, 5): raise AssertionError( 'proposals should have shapes (n, 4) or (n, 5), ' 'but found {}'.format(proposals.shape)) proposals = proposals[:, :4] if self.num_max_proposals is not None: proposals = proposals[:self.num_max_proposals] if len(proposals) == 0: proposals = np.array([[0, 0, 0, 0]], dtype=np.float32) results['proposals'] = proposals results['bbox_fields'].append('proposals') return results def __repr__(self): return self.__class__.__name__ + '(num_max_proposals={})'.format( self.num_max_proposals)