import numpy as np import torch from mmdet3d.core.bbox import DepthInstance3DBoxes from mmdet3d.datasets.pipelines import (IndoorFlipData, IndoorGlobalRotScaleTrans) def test_indoor_flip_data(): np.random.seed(0) sunrgbd_indoor_flip_data = IndoorFlipData(1, 1) sunrgbd_results = dict() sunrgbd_results['points'] = np.array( [[1.02828765e+00, 3.65790772e+00, 1.97294697e-01, 1.61959505e+00], [-3.95979017e-01, 1.05465031e+00, -7.49204338e-01, 6.73096001e-01]]) sunrgbd_results['gt_bboxes_3d'] = DepthInstance3DBoxes( np.array([[ 0.213684, 1.036364, -0.982323, 0.61541, 0.572574, 0.872728, 3.07028526 ], [ -0.449953, 1.395455, -1.027778, 1.500956, 1.637298, 0.636364, -1.58242359 ]])) sunrgbd_results = sunrgbd_indoor_flip_data(sunrgbd_results) sunrgbd_points = sunrgbd_results['points'] sunrgbd_gt_bboxes_3d = sunrgbd_results['gt_bboxes_3d'] expected_sunrgbd_points = np.array( [[-1.02828765, 3.65790772, 0.1972947, 1.61959505], [0.39597902, 1.05465031, -0.74920434, 0.673096]]) expected_sunrgbd_gt_bboxes_3d = torch.tensor( [[-0.2137, 1.0364, -0.9823, 0.6154, 0.5726, 0.8727, 0.0713], [0.4500, 1.3955, -1.0278, 1.5010, 1.6373, 0.6364, 4.7240]]) assert np.allclose(sunrgbd_points, expected_sunrgbd_points) assert torch.allclose(sunrgbd_gt_bboxes_3d.tensor, expected_sunrgbd_gt_bboxes_3d, 1e-3) np.random.seed(0) scannet_indoor_flip_data = IndoorFlipData(1, 1) scannet_results = dict() scannet_results['points'] = np.array( [[1.6110241e+00, -1.6903955e-01, 5.8115810e-01, 5.9897250e-01], [1.3978075e+00, 4.2035791e-01, 3.8729519e-01, 4.0510958e-01]]) scannet_results['gt_bboxes_3d'] = DepthInstance3DBoxes( np.array([[ 0.55903838, 0.48201692, 0.65688646, 0.65370704, 0.60029864, 0.5163464 ], [ -0.03226406, 1.70392646, 0.60348618, 0.65165804, 0.72084366, 0.64667457 ]]), box_dim=6, with_yaw=False) scannet_results = scannet_indoor_flip_data(scannet_results) scannet_points = scannet_results['points'] scannet_gt_bboxes_3d = scannet_results['gt_bboxes_3d'] expected_scannet_points = np.array( [[-1.6110241, 0.16903955, 0.5811581, 0.5989725], [-1.3978075, -0.42035791, 0.38729519, 0.40510958]]) expected_scannet_gt_bboxes_3d = torch.tensor( [[-0.5590, -0.4820, 0.6569, 0.6537, 0.6003, 0.5163, 0.0000], [0.0323, -1.7039, 0.6035, 0.6517, 0.7208, 0.6467, 0.0000]]) assert np.allclose(scannet_points, expected_scannet_points) assert torch.allclose(scannet_gt_bboxes_3d.tensor, expected_scannet_gt_bboxes_3d, 1e-2) def test_global_rot_scale(): np.random.seed(0) sunrgbd_augment = IndoorGlobalRotScaleTrans( True, rot_range=[-1 / 6, 1 / 6], scale_range=[0.85, 1.15]) sunrgbd_results = dict() sunrgbd_results['points'] = np.array( [[1.02828765e+00, 3.65790772e+00, 1.97294697e-01, 1.61959505e+00], [-3.95979017e-01, 1.05465031e+00, -7.49204338e-01, 6.73096001e-01]]) sunrgbd_results['gt_bboxes_3d'] = DepthInstance3DBoxes( np.array([[ 0.213684, 1.036364, -0.982323, 0.61541, 0.572574, 0.872728, 3.07028526 ], [ -0.449953, 1.395455, -1.027778, 1.500956, 1.637298, 0.636364, -1.58242359 ]])) sunrgbd_results = sunrgbd_augment(sunrgbd_results) sunrgbd_points = sunrgbd_results['points'] sunrgbd_gt_bboxes_3d = sunrgbd_results['gt_bboxes_3d'] expected_sunrgbd_points = np.array( [[0.89427376, 3.94489646, 0.21003141, 1.72415094], [-0.47835783, 1.09972989, -0.79757058, 0.71654893]]) expected_sunrgbd_gt_bboxes_3d = torch.tensor( [[0.1708, 1.1135, -1.0457, 0.6551, 0.6095, 0.9291, 3.0192], [-0.5543, 1.4591, -1.0941, 1.5979, 1.7430, 0.6774, -1.6335]]) assert np.allclose(sunrgbd_points, expected_sunrgbd_points) assert torch.allclose(sunrgbd_gt_bboxes_3d.tensor, expected_sunrgbd_gt_bboxes_3d, 1e-3) np.random.seed(0) scannet_augment = IndoorGlobalRotScaleTrans( True, rot_range=[-1 * 1 / 36, 1 / 36], scale_range=None) scannet_results = dict() scannet_results['points'] = np.array( [[1.6110241e+00, -1.6903955e-01, 5.8115810e-01, 5.9897250e-01], [1.3978075e+00, 4.2035791e-01, 3.8729519e-01, 4.0510958e-01]]) scannet_results['gt_bboxes_3d'] = DepthInstance3DBoxes( np.array([[ 0.55903838, 0.48201692, 0.65688646, 0.65370704, 0.60029864, 0.5163464 ], [ -0.03226406, 1.70392646, 0.60348618, 0.65165804, 0.72084366, 0.64667457 ]]), box_dim=6, with_yaw=False) scannet_results = scannet_augment(scannet_results) scannet_points = scannet_results['points'] scannet_gt_bboxes_3d = scannet_results['gt_bboxes_3d'] expected_scannet_points = np.array( [[1.61240576, -0.15530836, 0.5811581, 0.5989725], [1.39417555, 0.43225122, 0.38729519, 0.40510958]]) expected_scannet_gt_bboxes_3d = torch.tensor( [[0.5549, 0.4868, 0.6569, 0.6588, 0.6058, 0.5163, 0.0000], [-0.0468, 1.7036, 0.6035, 0.6578, 0.7264, 0.6467, 0.0000]]) assert np.allclose(scannet_points, expected_scannet_points) assert torch.allclose(scannet_gt_bboxes_3d.tensor, expected_scannet_gt_bboxes_3d, 1e-3)